

A Strategic Action Plan for Building Modern Industry Colleges at Jiangxi University of Technology in China: Insights from Stakeholder Assessments

Zou Mingmin¹, Xu Maoyun², Rowena M. Libo-on*3
¹Jiangxi University of Technology, China
²Nanchang University, China
³Central Philippine University, Philippines

*Corresponding Author Email: rmlibo-on@cpu.edu.ph

Date received: June 30, 2025 Date revised: July 15, 2025 Date accepted: August 4, 2025 Originality: 99% Grammarly Score: 99%

Similarity: 1%

Recommended citation:

Mingmin, Z., Maoyun, X., & Libo-on, R. (2025). A strategic action plan for building modern industry colleges at Jiangxi University of Technology in China: Insights from stakeholder assessments. *Journal of Interdisciplinary Perspectives*, 3(9), 52-58. https://doi.org/10.69569/jip.2025.541

Abstract. This study examines the current status, challenges, and developmental pathways of Modern Industry Colleges (MICs) at Jiangxi University of Technology (JUT) in China, to craft a strategic action plan that supports sustainable higher education reform. MICs envisioned as collaborative platforms between academia and industry are central to aligning education with regional economic needs and national innovation strategies. Despite growing policy attention, empirical studies on stakeholder perceptions remain limited. This research addresses that gap through a comprehensive survey-correlational design involving 360 stakeholders, including students, faculty, industry staff, government officials, and community members. Using a validated instrument (Cronbach's $\alpha = .978$), the findings reveal that MICs are perceived to be in a "Fair" state (M = 2.50), "Moderately Challenging" to develop (M = 2.62), and "Somewhat Promising" in terms of prospects (M = 2.57). Significant positive correlations were found among status, challenges, and pathways (r = .524-.680, p < .001), highlighting the interconnectedness of these dimensions. Based on the results, the study proposes a multi-faceted strategic action plan comprising six thematic areas and over 30 targeted initiatives focused on strategic governance, curriculum innovation, faculty development, industry partnerships, infrastructure modernization, and policy advocacy. The study contributes to academic literature and institutional practice by offering a replicable framework grounded in stakeholder engagement and systems theory. It underscores the urgent need for policy synergy, continuous stakeholder feedback, and university-industry collaboration to transform MICs into engines of innovation, talent development, and regional growth.

Keywords: Modern industry colleges; Stakeholder assessment; Industry-education integration; Higher education reform; Strategic action plan.

1.0 Introduction

Modern Industry Colleges (MICs) represent a significant shift in China's higher education landscape, aiming to align academic institutions with national industrial transformation and regional development (Zhuang et al., 2025). Launched under the Guidelines for Modern Industrial Colleges, this educational innovation emphasizes the integration of industry and education by fostering collaborative learning environments, dual-mentorship systems, and industry-driven curricula. As China intensifies efforts to cultivate a workforce responsive to rapid

technological change and economic demands, the development of MICs has become a strategic priority (Yang, 2024).

Despite substantial policy backing, implementing MICs across institutions has encountered numerous challenges, such as fragmented governance, insufficient industry participation, and a shortage of faculty with industry experience (Austin, 2024; Gázquez et al., 2021; Kwok, 2022). Previous studies have explored MICs primarily through policy analysis or case-based institutional reviews (Thompson & Laaser, 2021; Zhang & Chen, 2023), providing limited empirical insight into the perceptions of diverse stakeholder groups. Notably, a gap remains in the literature regarding integrated, multi-stakeholder evaluations that assess the actual status, barriers, and potential strategies for MIC development at the institutional level (Yin et al., 2025). Without such assessments, institutional planning risks being top-down and disconnected from the lived realities of those who enact and experience educational reform.

This study addresses the critical gap by evaluating stakeholder perceptions, comprising students, faculty, industry staff, government officials, and community members, regarding the construction of MICs at Jiangxi University of Technology (JUT). Grounded in Systems Theory and the Triple Helix Model of Innovation (Nicolescu & Petrescu, 2017; Carayannis et al., 2022), this research aims to develop a comprehensive, evidence-based strategic action plan that reflects the interrelationships among stakeholder assessments of MIC status, challenges, and developmental pathways. The purpose of this study is to formulate a strategic action plan for building and enhancing MICs at JUT through an empirical analysis of stakeholder insights. This work is significant in offering practical, data-informed solutions to improve MIC implementation and sustainability, thereby contributing to the broader goals of educational reform, workforce development, and regional innovation in China.

2.0 Methodology

2.1 Research Design

This study employed a survey-correlational research design, which is appropriate for assessing relationships between multiple variables based on stakeholder perceptions. This design was chosen to determine the perceived status, challenges, and developmental pathways of Modern Industry Colleges (MICs) at Jiangxi University of Technology (JUT) and to explore the correlations among these constructs. The design aligns with the study's aim to formulate an evidence-based strategic action plan, avoiding the manipulation of variables.

2.2 Research Locale

This study was conducted at Jiangxi University of Technology (JUT), situated in Nanchang, the capital of Jiangxi Province, China. JUT is a full-time private undergraduate university recognized for its strong emphasis on engineering, management, and the arts. It is gaining prominence in applied sciences and industry-academia collaboration. With over 42,000 full-time students and more than 2,800 faculty and staff members, JUT is one of the pioneering institutions in China that implemented modern industry colleges (MICs) in alignment with national directives on integrating education with industry. The university currently operates three MICs: the New Generation Information Technology Industry College, established in partnership with the Jiangxi Provincial Science and Technology Infrastructure Platform Center and Sichuang Digital Technology Co., Ltd.; the E-Commerce Industry College, formed through a collaboration with Baozun E-Commerce Group; and the Pickleball Industry College, developed in cooperation with the China Association for International Cooperation and Development of Private Enterprises and Yapilian (Shenzhen) Sports Co., Ltd. These MICs provide a dynamic and context-rich environment for examining the implementation challenges, developmental progress, and strategic planning needs of industry-academia partnerships in higher education, making JUT an ideal setting for this study.

2.3 Research Participants

The participants comprised 360 stakeholders from JUT, including students, faculty members, industry staff, government officials, and community members. A proportional random sampling technique ensured equitable representation across stakeholder groups. Inclusion criteria required participants to be: (1) aged 18–60; (2) affiliated with JUT as a second-year (or above) student, teaching faculty, industry collaborator, government partner, or community stakeholder; and (3) with at least two years of relevant involvement, except students. Individuals who did not meet these criteria were excluded from the study.

2.4 Research Instrument

A researcher-designed questionnaire consisted of five sections: demographic profile, status of MICs, challenges in

MIC construction, potential pathways, and open-ended suggestions for strategic planning. Three experts in education management validated the instrument and pilot-tested it with 32 participants not included in the main sample. The instrument showed high internal consistency, with an overall Cronbach's alpha of 0.978 and subscale alphas ranging from 0.939 to 0.964, establishing reliability and content validity.

2.5 Data Gathering Procedure

Data collection was conducted online over a period of two weeks. Before distribution, an endorsement letter was secured from the Graduate School of Central Philippine University and the JUT administration. Participants were given 20 minutes to complete the survey, which included instructions to ensure clarity. All data were collected voluntarily, with no incentives provided. Data were analyzed using both descriptive and inferential statistics. Descriptive statistics such as frequencies, means, and standard deviations summarized stakeholder profiles and responses. Inferential tests, including t-tests, one-way ANOVA, and Pearson's r correlation, were employed to identify significant differences and relationships among perceived status, challenges, and pathways. Interpretive scales were used to categorize perceptions from "Excellent" to "Poor" and "Highly Promising" to "Not Promising."

2.6 Ethical Considerations

This study adhered to ethical standards in social research. Prior to data collection, informed consent was obtained electronically from all participants. Responses were coded to maintain anonymity and confidentiality, and no personally identifiable information was collected or disclosed. Participation was entirely voluntary, and respondents could withdraw at any stage. The researchers declared no conflict of interest, and data security was observed throughout the process.

3.0 Results and Discussion

This study presents key findings on assessing the status, challenges, and developmental pathways of Modern Industry Colleges (MICs) at Jiangxi University of Technology (JUT), China, through descriptive and inferential statistical analyses of responses from 360 stakeholders. Drawing from these stakeholder insights, a comprehensive strategic action plan is proposed to guide the continued development and sustainability of MICs at JUT.

3.1 Stakeholders' Profile in terms of the Type of Stakeholder

Table 1 presents the stakeholder distribution in assessing Modern Industry Colleges (MICs) at Jiangxi University of Technology (JUT). Of the 360 respondents, the majority were students (67%), followed by faculty members (17%), industry staff (9%), and both government officials and community members (3% each). This sample structure showcases a strong student voice, a crucial perspective given their direct involvement with academic programs, services, and institutional outcomes.

Table 1. Stakeholders' Profile in terms of the Type of Stakeholder			
Category	f	%	
Entire Group	360	90	
Type of Stakeholder			
Industry Staff	36	9	
Government Official	12	3	
Faculty Member	60	17	
Student	240	67	
Community Member	12	3	

However, the limited representation of government officials and community members suggests a potential gap in broader stakeholder engagement. This is crucial for ensuring policy alignment, regulatory responsiveness, and community integration —key elements emphasized in the Triple Helix Model of Innovation (Carayannis et al., 2022). Faculty and industry partners contribute to a balanced, multi-perspective analysis, aligning with Wise et al. (2020), who underscore the importance of inclusive stakeholder participation in sustaining higher education reform initiatives, such as MICs. These demographic patterns underscore the importance of diverse viewpoints in planning and evaluating MICs. While students offer crucial insights into the relevance and effectiveness of institutional efforts, underrepresenting external stakeholders may lead to an incomplete understanding of system-level challenges, such as policy coordination, workforce integration, and regional economic development. It is essential to acknowledge that the small sample size of government officials and community members comprising only 3% of the total respondents constitutes a study limitation and may constrain the generalizability of their

perspectives.

3.2 Status of the Construction of Modern Industry Colleges at JUT in China when taken as an Entire Group and Categorized according to Type of Stakeholder

Table 2 illustrates the stakeholders' assessment of Modern Industry Colleges (MICs) status at Jiangxi University of Technology (JUT). The overall mean score was 2.50 (SD = 1.06), indicating a general perception of the MICs as being in a *Fair* state. Disaggregated by stakeholder type, the mean scores similarly reflect a Fair status across industry staff (M = 2.34), government officials (M = 2.11), faculty members (M = 2.13), and community members (M = 2.43). Notably, students rated the status more favorably, with a mean of 2.64, categorizing it as Good.

Table 2. Status of the Construction of Modern Industry Colleges at JUT in China as an Entire Group and Categorized according to Type of Stakeholder

Category ($n = 360$)	Status				
	Standard Deviation	Mean	Description		
Entire Group Stakeholder	1.06	2.50	Fair		
Industry Staff	0.94	2.34	Fair		
Government Officials	0.76	2.11	Fair		
Faculty Members	0.51	2.13	Fair		
Students	1.16	2.64	Good		
Community Members	0.99	2.43	Fair		

Legend: 4.21 - 5.00 (Excellent), 3.41 - 4.20 (Very Good), 2.61 - 3.40 (Good), 1.81 - 2.60 (Fair), 1.00 - 1.80 (Poor)

This divergence in perception may stem from differing levels of exposure and expectations. Students who directly engage with the curriculum, learning facilities, and campus life may perceive recent developments more optimistically. Meanwhile, faculty and external stakeholders likely base their assessments on deeper concerns regarding institutional capacity, resource allocation, and long-term sustainability (Adhikari & Shrestha, 2023). The relatively lower ratings from faculty and government officials signal structural issues, such as unclear governance mechanisms, misalignment with policy goals, or limited institutional autonomy, which were also highlighted in earlier studies (Yin et al., 2025; Mok et al., 2020). Furthermore, the uniformity of "Fair" ratings among external stakeholders suggests limited awareness or involvement in the operational progress of MICs, reinforcing the need for stronger communication and participatory planning.

3.3 Challenges of the Construction of Modern Industry Colleges at JUT in China when taken as an Entire Group and Categorized according to Type of Stakeholder

Table 3 presents stakeholder assessments of the challenges of constructing Modern Industry Colleges (MICs) at Jiangxi University of Technology (JUT). The overall mean score was 2.62 (SD = 1.01), indicating that the construction process is perceived as Moderately Challenging. Among stakeholders, faculty members (M = 2.69), industry staff (M = 2.67), and students (M = 2.63) echoed this view. In contrast, government officials (M = 2.16) and community members (M = 2.43) rated the challenges as Slightly Challenging.

Table 3. Challenges of the Construction of Modern Industry Colleges at JUT in China as an Entire Group and Categorized according to Type of Stakeholder

Category (n = 360)	Status			
	Standard Deviation	Mean	Description	
Entire Group Stakeholder	1.01	2.62	Moderately Challenging	
Industry Staff	1.06	2.67	Moderately Challenging	
Government Officials	0.32	2.16	Slightly Challenging	
Faculty Members	1.03	2.69	Moderately Challenging	
Students	1.01	2.63	Moderately Challenging	
Community Members	1.06	2.43	Slightly Challenging	

 $Legend: 4.21-5.00 \ (Extremely \ Challenging), \ 3.41-4.20 \ (Challenging), \ 2.61-3.40 \ (Moderately \ Challenging), \ 1.81-2.60 \ (Slightly \ Challenging), \ 1.00-1.80 \ (Not \ Challengin$

The perception of moderate challenge by those directly involved in implementation, such as faculty and industry staff, highlights operational concerns, including limited faculty-industry experience, misaligned curricula, and logistical constraints in establishing collaborative mechanisms. These findings are consistent with those of Tucker et al. (2024), who identified barriers such as a lack of experienced enterprise mentors, funding limitations, and uneven university-enterprise engagement. Conversely, government officials' lower challenge ratings may reflect a regulatory or policy-level viewpoint, lacking full exposure to day-to-day institutional constraints. This discrepancy suggests a disconnect between policy expectations and on-ground realities, a gap that has also been

noted in the work of Oteye and Dede (2025).

3.4 Pathways of the Construction of Modern Industry Colleges at JUT in China when taken as an Entire Group and Categorized according to Type of Stakeholder

Table 4 presents stakeholder evaluations of the potential pathways for developing Modern Industry Colleges (MICs) at Jiangxi University of Technology (JUT). The overall mean rating was 2.57 (SD = 1.11), suggesting that stakeholders view the future of MICs as Somewhat Promising. This view was consistent across all stakeholder groups: industry staff (M = 2.56), faculty members (M = 2.59), students (M = 2.60), government officials (M = 2.19), and community members (M = 2.26).

Table 4. Pathways of the Construction of Modern Industry Colleges at JUT in China as an Entire Group and Categorized according to Type of Stakeholder

Category ($n = 360$)	Status			
	Standard Deviation	Mean	Description	
Entire Group Stakeholder	1.11	2.57	Somewhat Promising	
Industry Staff	1.11	2.56	Somewhat Promising	
Government Officials	0.78	2.19	Somewhat Promising	
Faculty Members	1.12	2.59	Somewhat Promising	
Students	1.12	2.60	Somewhat Promising	
Community Members	1.00	2.26	Somewhat Promising	

Legend: 4.21 - 5.00 (Highly Promising), 3.41 - 4.20 (Very Promising), 2.61 - 3.40 (Promising), 1.81 - 2.60 (Somewhat Promising), 1.00 - 1.80 (Not Promising)

The moderate optimism expressed by internal stakeholders, faculty, students, and industry staff suggests cautious confidence in the institution's potential to enhance MICs, provided that identified challenges are addressed; this aligns with Dimitriadis and Gašević (2021), who emphasized the importance of collaborative educational models and structured feedback systems to support MIC evolution. While still categorizing the outlook as Somewhat Promising, government officials and community members registered comparatively lower scores. Their more conservative stance may reflect concerns about long-term sustainability, funding mechanisms, and the integration of MICs into broader regional development agendas (Chlebna & Suitner, 2025).

3.5 Relationship among Status of, Challenges of, and Pathways of the Construction of Modern Industry Colleges at JUT in China as Assessed Among the Stakeholders

Table 5 displays the Pearson's correlation coefficients examining the relationships among the perceived status, challenges, and pathways in constructing Modern Industry Colleges (MICs) at Jiangxi University of Technology (JUT). All correlations were statistically significant at $p \le .001$, indicating robust interconnections among the three core dimensions.

 $\textbf{Table 5.} \textit{ Pearson's r on the Relationship among the Status, Challenges, and Pathways of Modern Industry College Construction at JUT, China (Stakeholder Assessment)$

	Status of Construction of Modern Industry Colleges at Universities		Challenges of Construction of Modern Industry Colleges at Universities		Pathways of Construction of Modern Industry Colleges at Universities	
	r	r prob.	r	r prob.	r	r prob.
Status of Construction of Modern	_	-	.524***	.000	.680***	.000
Industry Colleges at Universities						
Challenges of Construction of Modern	-	-	-	-	.658***	.000
Industry Colleges at Universities						
Pathways of Construction of Modern	-	-	-	-	-	-
Industry Colleges at Universities						

***p ≤ .001

Specifically, a moderate positive correlation was observed between status and challenges (r = .524, p < .001), suggesting that as the perceived development of MICs progresses, stakeholders also recognize an increase in the complexity and scope of challenges. This finding reflects that institutional growth often surfaces deeper operational and systemic issues (Ostrom, 2025). A strong positive correlation emerged between status and pathways (r = .680, p < .001), indicating that stakeholders who perceive the status of MICs more favorably are also more optimistic about their future development. Similarly, the relationship between challenges and pathways was also strong (r = 0.658, p < 0.001), indicating that recognizing challenges is closely tied to the perceived viability of strategic solutions.

These significant associations affirm the value of adopting an integrated planning approach, wherein addressing challenges directly enhances institutional confidence in future pathways (Kauffman & Hill, 2021; Hoshaw et al., 2021). The findings support the use of a systems-thinking framework to guide MIC development, reinforcing the interconnectedness of stakeholder perceptions in shaping sustainable reforms.

4.0 Conclusion

This study contributes a strategic, stakeholder-informed framework for advancing the development of Modern Industry Colleges (MICs) at Jiangxi University of Technology (JUT), offering a data-driven response to the persistent disconnect between educational institutions and evolving industry demands. By capturing and analyzing the perceptions of key stakeholder groups, students, faculty, industry professionals, government officials, and community members, the research provides empirical grounding for institutional planning and policy alignment. The study's findings underscore the critical need for participatory governance, responsive curriculum design, faculty-industry integration, and performance-based support mechanisms to enhance the sustainability of MIC. For educational leaders, the results underscore the importance of creating dynamic institutional ecosystems that promote innovation, employability, and relevance to regional economic agendas. For policymakers, the study underscores the importance of multi-level policy coordination, funding strategies tied to performance metrics, and strengthened regulatory support for university-industry partnerships.

The strategic action plan developed through this study serves as a practical roadmap for JUT and other institutions aiming to operationalize industry-education integration. Its multi-dimensional focus, ranging from academic quality and digital transformation to alum engagement and community integration, positions it as a replicable model in similar contexts. Future research should explore longitudinal assessments of MIC implementation outcomes to examine how institutional strategies influence educational quality, workforce readiness, and regional development over time. Cross-institutional comparisons may also be conducted to identify best practices and contextual variations in MIC success factors across different universities and provinces. Additionally, qualitative inquiry into stakeholder roles, expectations, and power dynamics can uncover the nuanced processes that shape decision-making and policy alignment. Follow-up research could be guided by questions such as: How does faculty-industry collaboration evolve across implementation stages? What institutional factors predict sustained industry engagement? How do students' perceptions of MIC effectiveness shift throughout their academic journey? Hypotheses such as "Stronger faculty development programs positively predict perceived MIC sustainability" or "MICs with formalized governance structures report higher stakeholder satisfaction" can provide testable directions for future inquiry. These efforts will contribute to a deeper, evidence-based understanding of how MICs can support an adaptive, innovation-driven higher education system.

5.0 Contributions of Authors

Author 1: conceptualization, data gathering, data analysis Author 2: data analysis, data gathering Author 3: Advising, Final Editing

6.0 Funding

This study received no funding.

7.0 Conflict of Interests

The authors declare that they have no conflict of interest.

8.0 Acknowledgment

The authors would like to acknowledge Jiangxi University of Technology, Nanchang University, China, and Central Philippine University, Philippines, for their support of this academic

9.0 References

Adhikari, D. R., & Shrestha, P. (2023). Knowledge management initiatives for achieving Sustainable Development Goal 4.7: Higher education institutions' stakeholder perspectives. Journal of Knowledge Management, 27(4), 1109–1139. https://doi.org/10.1108/IKM-03-2022-0172

Austin, I., & Jones, G. A. (2024). Governance of higher education: Global perspectives, theories, and practices. Routledge. https://doi.org/10.4324/9781003283652

Carayannis, E. G., Campbell, D. F., & Grigoroudis, E. (2022). Helix trilogy: The triple, quadruple, and quintuple innovation helices from a theory, policy, and practice set of perspectives.

Journal of the Knowledge Economy, 13(3), 2272-2301. https://doi.org/10.1007/s13132-021-00813-x

Chlebna, C., & Suitner, J. (2025). The transition development nexus: Disentangling growth and transformation agendas in regional sustainability transitions. Review of Regional Research, 1-21. https://doi.org/10.1007/s10037-025-00231-5

Er, E., Dimitriadis, Y., & Gašević, D. (2021). A collaborative learning approach to dialogic peer feedback: A theoretical framework. Assessment & Evaluation in Higher Education, 46(4), 586-

Gázquez, J. L. R., Delgado, M. V. B., Gras, J. J. O., Lova, J. G., Gómez, M. V. G., & Zbiec, M. (2021). Lack of skills, knowledge and competences in higher education about Industry 4.0 in the manufacturing sector. RIED-Revista Iberoamericana de Educación a Distancia, 24(1), 285-313. https://doi.org/10.5944/ried.24.1.27548

Hoshaw, J. P., Ben-Avie, M., Daughtery, K. K., Santilli, N. R., Schramm-Possinger, M., Di Genova, L., & Isaacson, E. M. (2021). Integrated planning: The "difference that makes a difference" in institutional effectiveness over time. Intersection: A Journal at the Intersection of Assessment and Learning, 2(3), Article n3. https://tinyurl.com/2fdd8dh2

Kauffman, N., & Hill, K. (2021). Climate change, adaptation planning and institutional integration: A literature review and framework. Sustainability, 13(19), 10708. https://doi.org/10.3390/su131910708

Kwok, L. (2022). Labor shortage: A critical reflection and a call for industry-academia collaboration. International Journal of Contemporary Hospitality Management, 34(11), 3929–3943. https://doi.org/10.1108/IJCHM-01-2022-0103

Nicolescu, B. N., & Petrescu, T. C. (2017). About the systems theory in the field of education sciences. European Proceedings of Social and Behavioural Sciences.

Ostrom, E. (2025). Doing institutional analysis: Digging deeper than markets and hierarchies. In Handbook of new institutional economics (pp. 73-102). Springer Nature. https://doi.org/10.1007/978-3-031-50810-3_5

Oteyi, J. V., & Dede, D. (2025). Digital disconnect in education: The administrative challenge of aligning rhetoric and reality in the implementation of AI-powered and non-AI digital tools. International Journal of Educational Management, Rivers State University, 1(1), 196–208. https://jiedm.com/index.php/ijedm/article/view/18
Thompson, P., & Laaser, K. (2021). Beyond technological determinism: Revitalising labour process analyses of technology, capital and labour. Work in the Global Economy, 1(1–2), 139–159.

https://doi.org/10.1332/273241721X16276384832119

Tucker, R. C., Robinson, S. J., Liyanage, C. L., Fernandez, P. L., Cortez, L. A., Montebon, D. R., Tantanee, S., Khiewnavawongsa, S., Chaimoon, N., Weerasinghe, K. D. N., Gunawardena, K. S. L., & Dissanayake, R. (2024). Bridging academia and enterprise: A framework for collaborative success. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-024-02360-7
Wise, G., Dickinson, C., Katan, T., & Gallegos, M. C. (2020). Inclusive higher education governance: Managing stakeholders, strategy, structure and function. Studies in Higher Education, 45(2), 339-352. https://doi.org/10.1080/03075079.2018.15

Yang, C. (2024). Research on China's industrial structure upgrading and. In Proceedings of the 4th International Conference on Internet Finance and Digital Economy (ICIFDE 2024) (Vol. 301, p. 153). Springer Nature.

Yin, Z., Zhu, R., Wu, J., Yang, P., Song, X., & Wang, S. (2025, May). Research on the reciprocal university-enterprise cooperation model based on industry-education integration. In 2nd International Conference on Educational Development and Social Sciences (EDSS 2025) (pp. 640-648). Átlantis Press. https://doi.org/10.2991/978-2-38476-400-6

Zhang, Y., & Chen, X. (2023). Empirical analysis of university-industry collaboration in postgraduate education: A case study of Chinese universities of applied sciences. Sustainability, 15(7), 6252. https://doi.org/10.3390/su15076252

Zhuang, T., Oh, M., & Kimura, K. (2025). Modernizing higher education with industrial forces in Asia: A comparative study of discourse of university-industry collaboration in China, Japan and Singapore. Asia Pacific Education Review, 1-16. https://doi.org/10.1007/s12564-024-10033-y