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Abstract. Construction of bridges commonly uses trusses due to their lightweight design, which can
endure heavy loads and span large distances. However, there are instances when the supports of these
trusses do not lie normally on a horizontal surface. For some, the supports lie on inclined foundations,
which is the focus of this study. The main objective of this study is to present the basic theory of plane
truss analysis with an inclined roller support using the Direct Stiffness Method (DSM) in comparison to the
use of the Graphic Rapid Analysis Software Program (GRASP) to analyze the static behavior of the
structure. Furthermore, a case study is conducted to check the effects of inclined supports on a plane truss
structure. Based on the results, it was discovered that the introduction of inclined roller supports does

have a negative effect on the stability of the structure.

Keywords: Bridge; Bridge support; Inclined roller support; Plane truss; Graphic rapid analysis software;

Program; Direct stiffness method.

1.0 Introduction

Many structures are being built with the use of trusses,
whether it be made of steel or wood. The primary
advantage of trusses is that it can cover large spans
and support heavy loads. Bridges and roof systems
often use trusses because of their characteristics. The
use of structural trusses entails analysis especially
when it comes to the material properties used as well
as the length of each member used. Each element is
designed such that it will be able to support a certain
number of loads without noticeable deflections. The
most important property being considered in the
analysis of trusses is the stiffness of each element.
However, there are instances when these trusses are
supported by inclined supports, which may affect the
load capacity of the truss system. The study will
present the basic theory of analyzing Plane Trusses

with the use of the Direct Stiffness Method (DSM) and
the use of Graphic Rapid Analysis Software Program
(GRASP) to compare the static behavior of the
structure. The study will also present a case study of a
pedestrian bridge built using a Pratt truss deck bridge
having various angles of inclination of the roller
support to observe how the inclination would affect the
structure.

2.0 Structural Model and Matrix

Formulation
2.1 Structural Model
In Figure 1, a 9-element structure was used to
demonstrate the analysis of a plane truss with a hinge
support at one end, and a roller support inclined by 30
degrees at the other end using the Direct Stiffness
Method (DSM). Loads were applied at both horizontal
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and vertical directions of the joints, specifically, at
joints where there are no restraints. The following are
the material properties of the truss elements used in
the structure:

Modulus of Elasticity: 200,000 MPa
Area of Members: 2,813.42 mm?2
Moment of Inertia: 19.55 x 106 mm#

In Figure 2, the global axes for each node were
established. In Figure 3, the truss elements were
disassembled to display the local axes for each
element. To simplify the computation using DSM, the
element properties were displayed in Table 1.
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Figure 1. Plane truss model with inclined roller support
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Figure 2. Global Axes
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Figure 3. Local axes of each truss element v
ELEMENT PROPERTIES
Length E A EA g Bx"
Element | Node cos B | sin@ cos Bx" | sin Bx"
{m) {Mpa) {mm?) kN {deg) {deg)
1 1—=2| e00 |200,000 (2681342 | 562,683.56 | 0.00 | 1.000 | 0.000
2 2—=3 4.24 200,000 | 2,813.42 | 562,683.56 | -45.00 | 0.707 | -0.707
3 =4 4.24 200,000 | 2,813.42 | 562,683.56 | -45.00 | 0.707 | -0.707 | -75.00 ( 0.259 -0.966
4 S—=4 B.00 200,000 | 2,813.42 | 56Z,6683.56 | 0.00 1.000 | 0.000 | -30.00 ) 0.8eb -0.500
5 b =5 4.24 200,000 | 2,813.42 | 562,683.56 | -45.00 | 0.707 | -0.707
G 16 4.24 200,000 | 2,813.42 | 562,683.56 | -45.00 | 0.707 | -0.707
7 b =2 4,24 200,000 | 2,813.42 | 5eZ,683.56 | 45.00 | 0.707 | 0707
8 5=12 6.00 200,000 | 2,813.42 | 562,683.56 | 90.00 | 0.000 | 1.000
9 5—=+3 4.24 200,000 | 2,813.42 | 562,683.56 | 4500 | 0.707 | 0.707

Table 1. Element properties
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2.2 Matrix Formulation

Using the Direct Stiffness Method, the local stiffness
matrices for each truss element were constructed
based on the given properties. Likewise, the
transformation matrices were constructed based on the
established local axes of the truss elements.

Element Local Stiffness Matrix
Tables 2 to 10 display the local stiffness matrix (k) for
each element.

11 12 1 2
0.167 |0.000|-0.167|0.000 |11
k, = EA| 0.000 {0.000 | 0.000 |0.000|12
-0.167|0.000| 0.167 |0.000| 1
0.000 (0.000| 0.000 | 0.000

Table 2. Local stiffness matrix of member 1

1 2 3 L
0.236 | 0.000 |-0.236 | 0.000

k, = EA| 0.000 |0.000| 0.000 | 0.000

-0.236|0.000 | 0.236 |0.000
0.000 | 0.000 | 0.000 | 0.000

Table 3. Local stiffness matrix of member 2

2 W N =

3 4 9 10
0.236 | 0.000|-0.236|0.000| 3

k; = EA| 0.000 | 0.000 | 0.000 {0.000| 4

-0.236|0.000 | 0.236 [0.000| 9
0.000 | 0.000| 0.000 |0.000|10

Table 4. Local stiffness matrix of member 3

7 8 9 10
0.167 | 0.000 | -0.167 | 0.000
k,=EA| 0.000 | 0.000| 0.000 |0.000
-0.167|0.000 | 0.167 | 0.000
0.000 | 0.000 | 0.000 |0.000|10

Table 5. Local stiffness matrix of member 4

5

6

7

8

0.236

0.000

-0.236

0.000

ks = EA| 0.000

0.000

0.000

0.000

-0.236

0.000

0.236

0.000

0.000

0.000

0.000

0.000

Table 6. Local stittness matrix ot member 5

11

12

5

0.236

0.000

-0.236

0.000

k. = EA| 0.000

0.000

0.000

0.000

-0.236

0.000

0.236

0.000

0.000

0.000

0.000

0.000

Table 7. Local stiffness matrix of member 6

5

6

1

0.236

0.000

-0.236

0.000

k,=EA| 0.000

0.000

0.000

0.000

-0.236

0.000

0.236

0.000

0.000

0.000

0.000

Table 8. Local stiffness matrix of member 7

7

8

1

0.000

0.167

0.000

-0.167

0.000

ks = EA| 0.000

0.000

0.000

0.000

-0.167

0.000

0.167

0.000

0.000

0.000

0.000

0.000

Table 9. Local stiffness matrix of member 8

7

8

3

0.236

0.000

-0.236

0.000

k, = EA| 0.000

0.000

0.000

0.000

-0.236

0.000

0.236

0.000

0.000

0.000

0.000

0.000

Table 10. Local stiffness matrix of member 9
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Element Transformation Matrix
Tables 11 to 19 display the transformation matrix ()
for each element.

11 12 1 2
1.000 |0.000 | 0.000 | 0.000|11
0.000 [ 1.000| 0.000 |0.000|12
0.000 {0.000| 1.000 |0.000]| 1
0.000 | 0.000| 0.000 |1.000

Table 11. Transformation matrix of member 1

1 2 3 4
0.707 |-0.707| 0.000 | 0.000
0.707 | 0.707 | 0.000 | 0.000
0.000 | 0.000 | 0.707 |-0.707
0.000 | 0.000 | 0.707 | 0.707

Table 12. Transformation matrix of member 2

= W N e

3 4 9 10
0.707 |-0.707| 0.000 | 0.000| 3
0.707 | 0.707 | 0.000 | 0.000
0.000 | 0.000 | 0.259 |-0.966| 9
0.000 | 0.000 | 0.966 | 0.259 |10

Table 13. Transformation matrix of member 3

7 8 9 10
1.000 | 0.000 | 0.000 | 0.000
0.000 | 1.000 | 0.000 | 0.000
0.000 | 0.000 | 0.866 |-0.500| 9
0.000 | 0.000| 0.500 | 0.866 | 10

Table 14. Transformation matrix of member 4

5 6 7 8
0.707 |-0.707| 0.000 | 0.000
0.707 | 0.707 | 0.000 | 0.000
0.000 | 0.000| 0.707 (-0.707
0.000 | 0.000| 0.707 | 0.707

Table 15. Transformation matrix of member 5

Bs =

00~ O U

11 12 5 6
0.707 |-0.707| 0.000 | 0.000 |11

0.707 | 0.707 | 0.000 | 0.000 |12

0.000 | 0.000 | 0.707 |-0.707| 5
0.000 | 0.000| 0.707 | 0.707 | 6

Be =

Table 16. Transformation matrix of member 6

5 6 1 2
0.707 | 0.707 | 0.000 | 0.000
-0.707| 0.707 | 0.000 | 0.000
0.000 | 0.000 | 0.707 | 0.707
0.000 | 0.000 |-0.707| 0.707

Table 17. Transformation matrix of member 7

B,=

N = O

7 8 1 2
0.000 | 1.000 | 0.000 | 0.000

-1.000| 0.000 | 0.000 | 0.000

0.000 | 0.000 | 0.000 | 1.000
0.000 | 0.000 |-1.000| 0.000

Table 18. Transformation matrix of member 8

Bs =

N =00

7 8 3 4
0.707 | 0.707 | 0.000 | 0.000
-0.707| 0.707 | 0.000 | 0.000
0.000 | 0.000 | 0.707 | 0.707
0.000 | 0.000 |-0.707| 0.707

Table 19. Transformation matrix of member 9

B W 00 -

3.0 Matrix Solution Using Excel
3.1 Computation of the Element Global Stiffness

Matrix

Using the constructed local stiffness matrix (k) and
transformation matrix (B), the global stiffness matrix
[Ke] of each truss element can be computed using
equation 1. Tables 20 to 28 display the computed global
stiffness matrix [Ke] for each element.

[Ke] = [BT1[K]IB] (Equation 1)

148



11 12 1 2

0.167 | 0.000 (-0.167| 0.000

[K.]=EA| 0.000 | 0.000 | 0.000 | 0.000

-0.167| 0.000 | 0.167 | 0.000

0.000 | 0.000 | 0.000 | 0.000

Table 20. Global stiffness matrix of member 1

1 2 3 4

0.118 |-0.118(-0.118| 0.118

[K;] = EA|-0.118| 0.118 | 0.118 |-0.118

-0.118| 0.118 | 0.118 |-0.118

0.118 |-0.118(-0.118| 0.118

Table 21. Global stiffness matrix of member 2

3 a4 2 10

0.118 [-0.118|-0.043| 0.161

11
12

=W N =

[K;] = EA|-0.118| 0.118 | 0.043 |-0.161| 4

-0.043| 0.043 | 0.016 |-0.059

0.161 [-0.161|-0.059| 0.220

Table 22. Global stiffness matrix of member 3

7 8 9 10

0.167 | 0.000 |-0.144 | 0.083

[K;] = EA| 0.000 | 0.000 | 0.000 | 0.000

-0.144| 0.000 | 0.125 |-0.072

0.083 | 0.000 |-0.072| 0.042

Table 23. Global stiffness matrix of member 4

5 6 7 8

0.118 |-0.118|-0.118| 0.118

[Ks] = EA|-0.118| 0.118 | 0.118 |-0.118

-0.118| 0.118 | 0.118 |-0.118

0.118 |-0.118|-0.118| 0.118

Table 24. Global stiffness matrix of member 5

10

10

0 ~N
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11 12 5 6
0.118 -0.118(-0.118| 0.118 | 11

[Ks] = EA|-0.118| 0.118 | 0.118 |-0.118| 12

-0.118| 0.118 | 0.118 |-0.118| 5
0.118 |-0.118|-0.118| 0.118 | 6

Table 25. Global stiffness matrix of member 6

5 6 1 2
0.118 | 0.118 |-0.118|-0.118
[K;]1=EA| 0.118 | 0.118 |-0.118|-0.118
-0.118|-0.118| 0.118 | 0.118
-0.118|-0.118| 0.118 | 0.118

Table 26. Global stiffness matrix of member 7

N = U

7 8 1 2
0.000 | 0.000 | 0.000 | 0.000
[Ke] = EA| 0.000 | 0.167 | 0.000 |-0.167
0.000 | 0.000 | 0.000 | 0.000
0.000 |-0.167| 0.000 | 0.167

Table 27. Global stiffness matrix of member 8

N = 00

7 8 3 4
0.118 | 0.118 -0.118|-0.118
[Ks] = EA| 0.118 | 0.118 |-0.118(-0.118
-0.118|-0.118| 0.118 | 0.118
-0.118|-0.118| 0.118 | 0.118

Table 28. Global stiffness matrix of member 9

=W 00 o~

3.2 Construction of Expanded Structure Global
Stiffness Matrix

With the computed global stiffness matrix [Ke] of
each element, the expanded structure global stiffness
matrix [Ks] can be constructed by getting the
summation of the element global stiffness matrices.
Table 29 shows the expanded global stiffness matrix
[Ks].



1 2 3 4 5 6 7 8 9 0| 11 | 12
[K]=FA| 0402 | 0.000| O 0 0 0 |0.000|0.000| O 0 |0167] 0 |1
0.000| 0402 | 0 0 0 0 |0000|0167| O |0.000| O 0 |2
0 0 |0354|0118 © 0 |0118/0118] 0© 0 o000 0 |3
0 0 |0.118/035| 0 |0.000]-0.118|-0.118| 0 0 0 0 |4
0 0 0 0 |0354| 0 |0118] © 0 0 0 0 |5
0 0 0 |0000| O |0354] O 0 0 0 0 0 |6
0.000 | 0.000 | 0.118| 0.118 0118 0 |0402| 0 |0.144| 0 0 0 |7
0.000 | -0.167| 0.118| 0.118| 0© 0 0 |0402| © 0 0 |0.000| 8
0 0 0 0 0 |0144) 0 |0141| O 0 0 |9
0 |0000| O 0 0 0 0 0 0 |0262] 0 0 |10
-0.167| 0 0.000 0 0 0 0 0 0 0 |0285) 0 |11
0 0 0 0 0 0 0 0000 O 0 0 |0118|12
Table 29. Expanded global structure stiffness matrix
3.3 Global Nodal Forces U [m)
Table 30 displays the known global nodal forces [FP] 3
and unknown reactions at supports [FQ]. ot Lo W
U2 = ?
F [kN) U; = ?
Fy =|-2.00 Uy=| ?
Fy = | 0.00 Up|us =| 7
Fy =|-2.00 Ug =| °?
Fq = | 0.00 U]' = F‘J
Fp F5 = | 0.00 Us = ?
FE =|(-5.00 Ug = '3
FT = OOO Uiﬂ = ODD
Fg = |-5.00 Ug|Uyy = 0.00
Fg = | 0.00 Uy, =|0.00
Fup = ?
Table 31. Global nodal displacements
Fu Fﬂ = ':J
Fp=| ? 3.5 Global Structure Stiffness Equation

Table 30. Global nodal forces and reactions at supports

3.4 Global Nodal Displacements
Table 31 displays the unknown global nodal
displacements [UP] and zero nodal displacements at

supports [UQ].

Using the expanded global structure stiffness matrix
[KS] in Table 29, global nodal forces [F] in Table 30,
and global nodal displacements [U] in Table 31, the
global structure stiffness equation can be formulated
using equation 2. Equation 3 displays the partitioned
matrices for the known and unknown values of the
global nodal forces and global nodal displacements.
Table 32 displays the partitioned global structure

stiffness equation matrix.
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[F]=[Ks][U]

(Equation 2)




U
£= [KPLKPQ} [~ ] (Equation 3)
r Kor Uq
P Koo
Q
[Fel =|  [Kepl [Kral [Ue]
[Fal=|  [Kael [Kaal [Vl
-2 |226,406.38| 0.00 |-66,312.89| 66,312.89 |-66,312.89|-66,312.689| 0.00 0.00 0.00 0.00 [-93780.58| 000 | U,
0 0.00 226,406.38| 66,312.89 |-66,312.89 (-66,312.89 | -66,312.89 0.00 -93,780.59 0.00 0.00 0.00 0.00 U,
-2 |-66,312.89 66,312.89 | 198,938.68|-66,312.89| 0.00 0.00 |-66,312.89|-66,312.89|-24,272.20| 90,585.10 | 0.00 000 | us
0 |66,312.89 |-66,312.89|-66,312.89[195,938.68) 0.00 0.00 |-66,312.89|-66,312.89 24,272.20( -90,585.10|  0.00 0.00 | U,
1] -66,312.89|-66,312.89 0.00 0.00 198,938.68|-66,312.89 (-66,312.89 | 66,312.89 0.00 0.00 -66,312.89 66,312.89 | Ug
-5 |-66,312.89|-66,312.89 0.00 0.00 -66,312.89 [ 198,938.68| 66,312.89 |-66,312.89 0.00 0.00 66,312.89 |-66,312.89| Ug
0 0.00 0.00 |-66,312.89|-66,312.89|-66,312.89| 66,312.89 |226,406.38| 0.00 |-81,216.38 46,890.30 | 0.00 000 | u,
-5 | o000 |[-93,780.59|-66,312.89|-66,312.89| 66,312.89 |-66,312.89| 0.00 |226,406.38| 0.00 0.00 0.00 000 | u
0 0.00 0.00 |-24,272.20( 24,272.20| 0.00 0.00 |[-81,21638) 000 |79219.69(-7376463 0.00 000 | us
Fig 0.00 0.00 90,585.10 | -90,585.10 0.00 0.00 46,890.30 0.00 -73,764.63|147,186.69 0.00 0.00 1]
Fq1 |-93,780.59 0.00 0.00 0.00 -66,312.89| 66,312.89 0.00 0.00 0.00 0.00 160,093.49(-66,312.89| O
Fi, | 0.00 0.00 0.00 0.00 | 66312.89 |-66,312.89| 0.00 0.00 0.00 0.00 |-66,312.89|66,312.89| 0

Table 32. Global structure stiffness equation matrix

3.6 Computation of Global Nodal Displacements

Using the global structure stiffness equation in Table 32, the unknown nodal displacements may be computed
using Equation 4. Table 33 displays the global nodal displacement equation matrix and Table 34 displays the
computed values of the global nodal displacements.

[Up] = [Kpp][Fr] (Equation 4)

[Up]= [Kpprl] [Fpl
U, = |0.00001066|0.00000750|0.00000908|0.00000591|0.00000908 (0.00000908 |0.00000750|0.00000750|0.00000865| -2.00
U,= |0.00000750|0.00002471|0.00001376|0.00002038|0.00001386(0.00001834|0.00001259|0.00002155|0.00001088| 0.00
U;= |0.00000908|0.00001376|0.00003599|0.00002782|0.00001407 {0.00000877|0.00003344 | 0.00002284|0.00003678| -2.00
U,= |0.00000591|0.00002038|0.00002782|0.00003293|0.00001355(0.00001273|0.00002793|0.00002629|0.00002676| 0.00
Ug= |0.00000908|0.00001386|0.00001407|0.00001355|0.00001789(0.00001259|0.00001534 |0.00001228|0.00001589| 0.00
Ug= |0.00000908|0.00001834|0.00000877|0.00001273|0.00001259(0.00002237|0.00000474|0.00001676|0.00000365| -5.00
U,= |0.00000750|0.00001259|0.00003344|0.00002793|0.00001534(0.00000474|0.00004128|0.00002008|0.00004401| 0.00
Ug= |0.00000750|0.00002155|0.00002284|0.00002629|0.00001228(0.00001676|0.00002008|0.00002904|0.00001953| -5.00
Uy=  |0.00000865|0.00001088|0.00003678|0.00002676|0.00001589(0.00000365|0.00004401|0.00001953|0.00006081| 0.00

Table 33. Global nodal displacement equation matrix

[Ue]
U= |[-0.0001224 m -0.1224 mm
U,= -0.0002420 m -0.2420 mm
Us= [-0.0002482 m -0.2482 mm
U= -0.0002626 m -0.2626 mm
Us= -0.0001707 m -0.1707 mm
Ug= -0.0002314 m -0.2314 mm
U;= -0.0002060 m -0.2060 mm
Us= -0.0002897 m -0.2897 mm
-0.0002067 m -0.2067 mm (along x"-axis)
Ug= -0.0001790 m -0.1790 mm (along x-axis)
-0.0001034 m -0.1034 mm (along y-axis)

Table 34. Global nodal displacements
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3.7 Computation of Reaction Forces at Supports

Using the global structure stiffness equation in Table 32 and the computed global nodal displacements in Table
34, the reaction forces at supports may be computed using Equation 5. Table 35 displays the global nodal forces
equation matrix and table 36 displays the computed values of the reaction forces at supports.

[Fal = [Kor][UP] (Equation 5)

[Fol = [Kap] [Up]

Fig = 0.00 0.00|90,585.10|-90,585.10 0.00 0.00 46,890.30(0.00|-73,764.63 | -0.0001224
Fpp = -93,780.59(0.00 0.00 0.00 -66,312.89 | 66,312.89 0.00 0.00 0.00 -0.0002420
Fip = 0.00 0.00 0.00 0.00 66,312.89 (-66,312.89 0.00 0.00 0.00 -0.0002482
-0.0002626
-0.0001707
-0.0002314
-0.0002060
-0.0002897
-0.0002067

Table 35. Global nodal forces equation matrix

[Fol
Fo= | 6.899 kN
F, = | 7.450 kN
Fo = | 4.025 kN

Table 36. Reaction forces at supports

3.8 Computation of Local Member Forces

With the computed global nodal displacements, a transformation from global to local nodal displacement is
necessary to compute the local axial forces of each member. Using the local member forces formula in equation
6, the axial member forces were computed. Tables 37 to 45 display the local member forces equation matrices
and the results.

[Pe] = [£][BI[U] (Equation 6)
Pyy= ks By u Py
Faq W= 93780.59333 1} -93780.59 0 1 0 0 i} 0.0000000 Py = 11.47 kN
Piag= 0 1} 0 0 1} 1 0 1} 0.0000000 Py = 0.00 kN
Py = -33780.59333 I} 93780.59 0 I} 0 1 i} -0.0001224 Pyy= -11.47 kN
Pam= 0 I} 1} 0 I} 0 0 1 -0.0002420 Pyy= 0.00 kN
Table 37. Local member force of Member 1
Py= k; B u Py
Priz=| 13262575 0 -132625.791 0 0.707106781 | -0.707106781 0 0 -0.0001224 Py)= 9.86 kN
Pag= I} 0 0 0 0707106781 | 0.707106731 0 0 -0.0002420 Pypy= 0.00 kN
Faig=| -132625.73 0 132635.79 0 0 a 0. 707106781 | -0. 707106781 | -0.0002482 Py )= -0.86 kM
Paz= 1} 0 0 1} 0 1] 0707106721 | 0.707106781 | -0.0002626 Pyp)= 0.00 kN

Table 38. Local member force of member 2
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Pey= k; P u Py
F'3[3]: 132635.79 i} -132635.79 0 0. 707106781 | -0. 707106781 0 0 -0.0002482 P == 8.45 kN
Fa == 0 1} 0 0 0.707106781 | 0.707106731 0 0 -0.0002626 pdﬁ]: 0.00 kN
Py El -132625.79 1} 132625.79 0 0 0 0,258819045 | -0.965925826 | -0,0002067 Py == -8.45 kN
Pag == 0 I} 0 0 0 0 0,965925826 | 0.2583819045 | 0.0000000 Py == 0.00 kN
Table 39. Local member force of member 3
Ppy= k, B u Py
P; = 93780.59 0 -93780.59 1] 1 a 0 0 -0.0002060 P, @)= -2.53 kN
Fs = 0 0 0 1] 0 1 0 0 -0,0002897 P @)= 0.00 kM
Pa |= -93780.59 0 93780.59 1] 0 1] 0.866025404 -0.5 -0,0002067 P, @)= 2.53 kN
Paop= 0 0 0 0 0 0 0.5 0.866025404 0 Piag= | 0.00 kN
Table 40. Local member force of member 4
Ps;= ks Ps u P,
Pg 5= 13262579 0 -132625.79) 0 0707106781 | -0.707106781 0 0 -0.0001707 P 5= -2.16 kN
Pa 5= 0 0 0 1] 0707106781 | 0.707106781 0 0 -0.0002314 P 5= 0.00 kN
P, 5= -132625.79 0 132625.79 1] 0 a 0. 707106781 | -0. 707106781 | -0.0002060 P, 5= 216 kN
P 5= 0 0 0 1] 0 1] 0. 7071068781 | 0.707106781 |-0.0002897 Py 5= 0.00 kN
Table 41. Local member force of member 5
Pii= k; Bs u P
Faa (6= 13262579 0 -132625.79) 0 0707106781 | -0.707106781 0 0 1] Py )= -3.69 kM
F'u[ﬂ= 0 0 0 a 0707106781 | 0.707106781 0 0 1] Py )= 0.00 kN
Pg |= -132625.79 0 132625.79 1] 0 1] 0. 707106781 | -0. 707106731 |-0.0001707 P 6= 5.69 kN
Ps[ﬂ: i} 0 0 1] 0 a 0. 707106781 | 0.707106781 |-0.0002314 Py 6= 0.00 kN
Table 42. Local member force of member 6
Pm: k; B u Pm
Fg 7= 13262579 0 -132625.79) 0 0707106781 | 0707106731 0 0 -0,0001707 P = -3.04 kN
P6[7]= 0 0 0 a -0, 707106781 | 0.70710678L 0 0 -0.0002314 P 7= 0.00 kN
Py 7= -132625.79 0 132625.79 a 0 a 0.707106781 | 0. 707106781 (-0.0001224 lez 3.54 kN
Pz[?]: 0 0 0 1] 0 1] -0.707106781 | 0.707106781 | -0.0002420 P, = 0.00 kN
Table 43. Local member force of member 7
Pe= kg B U P
Ps 5= 93780.59 0 -93780.59 0 6.12574E-17 1 1} 0 -0.0002060 P, )= -1.4F kN
Fs 8= 0 0 1} 0 -1 6.12574E-17 0 0 -0.00028597 P )= 0.00 kN
Py 8= -93730.59 0 93780.59 0 0 0 6,12574E-17 1 -0,0001224 Py €= 4.47 kN
Pz[s]z 0 0 I} 0 0 0 -1 6,12574E-17 |-0.0002420 P, E)= 0.00 kN
Table 44. Local member force of member 8
Pg= ky [ U Py
F; @= 13262379 1] -132625.79 0 0.70TL0ETEL | 0.707106731 i} 0 -0.0002060 P, @)= 141 kM
P = 1} 1] 0 0 -0, 707106721 | 0707106781 1} 0 -0,0002897 Pg @)= 0.00 kN
P3[9]= -132625.79 a 13262579 0 0 0 0, 707106781 | 0.707106731 (-0.0002482 P @)= -1.41 kN
Pa @)= 0 a 0 0 0 0 -0.70TL06TEL | OLFOTL0ATEL |-0.0002626 P, @)= 0.00 kN

Table 45. Local member force of member 9
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4.0 Computer-Aided Analysis

4.1 Modeling in GRASP Software

In this section, an equivalent model was presented
using GRASP software to compute the displacements
and forces acting on the structure. In Figure 4, an
additional truss member, labeled as D- 11, was added
perpendicular to the y-axis of the inclined roller
support. To get accurate results, the area of the
additional member was increased to a large extent to
increase the stiffness of the inclined roller support
equivalent representation.

l. AV
(2 /1 - B.1
Fx=2.00
&) Fy=560-4 9
5 -7
Fx=2.00
g Fy=560-5 10
N-3 B-3 -4

Figure 4. GRASP equivalent model

4.2 Results of the Analysis

In Figure 5 and Table 46, the resulting reactions at the
supports based from the GRASP software analysis are
displayed.

]
Ry=4 03KN

Rx=7.45KN,.
Fr=2.00

&

L7
Fx=2.00

Fy=5

] 4
11Rx=3.45KN
Ry=5.97KN

Figure 5. GRASP reaction at supports
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4] Nodal Reactions
Live Load
Node Fx [KN] Fy [KN]
N-1 7.4435 4.0252
N-7 -3.4495 5.9748

Table 46. Tabulated GRASP reaction at supports

In Figure 6 and Table 47, the resulting nodal
displacements based from the GRASP software
analysis are displayed.

= 0.000 mm
dy®_0.000 mm

-4
=1 1-0.179 mm

dx = -0.206 mm
dy 8y.70.103 mm
dy= -0.290 mm s dx = 0.000 mm
dy = 0.000 mm

Figure 6. GRASP nodal displacements

ﬂ MNodal Displacements
Live Load
Node dx [mm] dy [mm]
N-1 0.000000 0.000000
N-2 -0.122358 -0.241930
N-3 -0.206004 -0.289705
N-4 -0.179077 -0.103430
N-5 -0.170673 -0.231374
N-E -0.248168 -0.262621
N-7 0.000000 0.000000

Table 47. Tabulated GRASP nodal displacements

In Figure 7 and Table 48, the resulting local member
forces based from the GRASP software analysis are
displayed.



iii. Self-weight and other supplemental loads were
neglected

iv. An equivalent model was created using the
Graphical Rapid Analysis of Structures Program
(GRASP) to evaluate the static behavior of the
truss.

'\w 5.3 Methodology
B4 The analysis of the Pratt Truss Deck Bridge was

2 executed using a two-dimensional linear elastic-truss

4  model with the aid of the Graphical Rapid Analysis of
Structures Program (GRASP). The study focused on
Figure 7. GRASP member forces four models having roller supports with the following
angles of inclination:
ﬂ Mernber Forces
Live Load i. Model A - 0 degrees inclination
T Feilk] | Fri KNI ii. Model B - 30 degrees inclination
1 A 114748 iii. Model C - 45 degrees inclination
B3 5 BoED 5 5357 iv. Model D - 60 degrees inclination
D4 35355 3.5355
05 14142 1.4142 Modelling the Truss Bridge
06 5 6925 56925 For the three models with an inclined roller support,
o7 4.4743 4.4743 the roller support was represented by a truss element
08 21570 21570 which was oriented perpendicular to its restrained
09 -9.8638 -9.8638 axis since the GRASP software is only limited to
D-10 84438 84436 supports that are oriented normally to the horizontal
D11 58991 68991 surface. Figures 8 to 11 show the different models with
Table 48. Tabulated GRASP member forces their corresponding roller support inclined at a certain
degree. Figures 12 to 15 will display the equivalent
5.0 Case Study GRASP representations of the four models, together
5.1 Objectives with the reactions obtained.
i. To analyze the behavior of a Plane Pratt Truss
Deck Bridge supported by a hinge at one end and 10,80 kN 10.80 ky 10.80 kN 10.80 kN 10.80 kN
a roller support inclined at varying angles at the
opposite end
ii. To verify if inclined supports are detrimental to a u‘m
structure |
5.2 Scope of the Study som | - som — | som

The study was done in accordance with the given
parameters and loading conditions to simplify the
analysis.

ii. The truss was loaded under concentrated live
loads only at the joints of the structure

Figure 8. Model A - zero degrees inclination
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1080 kN 1080 kN 1080 kN 1080 kN 1080 kN horizontal surface, and no horizontal forces acted
on the truss model.

20m Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80
Rx=0.00KN
5] B2 3 B3 N4 B4 !
30m 30m 30m 30m Pumet itk " [F=27.00N
’ ’ ’ -8 3 C3 D-14 L7 12
Figure 9. Model B - 30 degrees inclination
N7 B-10 -6 B-11 M-8

10.80 kN 10.80 kN 10.80 kN 10.80 kN 10.80 kN Figure 12. Reaction at supports of Model A

. On the other hand, figures 13, 14, and 15 with
the inclined roller support display the reactions of the
hinge supports at node N-1 and node N-9. As can be
observed in the three figures, there is an additional
truss member D-15 representing the equivalent roller
support connected to node N-5. D-15 is varyingly
inclined depending on the angle of inclination of the
roller support. From the reactions obtained, we notice
that as the angle of inclination of the roller support
increases, the horizontal reactions at the hinge
supports also increase. The resultant values obtained

20m from the reactions at node N-9 will result in the

vertical reaction of the inclined roller support along
its independent y-axis. From here, we can already

30m 30m 30m 30m

Figure 10. Model C - 45 degrees inclination

10.80 kN 10.80 kN 10.80 kN 10.80 kN 10.80 kN

30m 30m 30m 30m deduce that as we increase the angle of inclination of

Figure 11. Model D - 60 degrees inclination the roller support, it becomes more stressed based on

) the resultant value of the reactions at node N-9 of
Design Parameters each model

The truss elements were designed using W8x31 steel
members having a modulus of elasticity of 200GPa, a

cross-sectional area of 5,890mm?2, and a moment of Eys1080 by 0 FR10R) el F=1050
i i 6 4
inertia of 46 x 106 mm*. . - - — N =
Ry=2%00KN -5 Ru=15.59KN
. ] 3 ] D-14 L7 D12 b e
Loadmgs Ry=27.00KN
For this case study, live loads acting at the joints with 5O B W
a magnitude of 10.8 kN were considered. Self-weight
and other supplemental loads were neglected. Figure 13. Reaction at supports of Model B
5.4 Results and Discussions Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80
Reaction at Supports
In Figure 12, the reactions at the supports at node N-1 Fe27 SO E i L2 I R Sl
and node N-5 were presented. As observed, the Fe R = L Ry-27 000
reactions at the supports were limited to vertical e
reactions since all the supports are normal to the Figure 14. Reaction at supports of Model C
Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80
Ru=46.77KYAL: BT B2 3 B3 4 B4 Fix=46.77KN
Ry=27-00KN b e
L8 3 ] D-14 L7 12 Ry=27.00KN
-7 B-10 -6 B-11 -8

Figure 15. Reaction at supports of Model D
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Local Member Forces

In Figures 16 to 19, the local member axial forces for
each model are displayed. Tables 49 to 52 will display
the tabulated axial forces of the members of each

model.
Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80
-32.4 -324 -32.4 -324 -24.3 243"
B2 E] B3 r) X
97
8 a5 D14 Ci7 D12
97
164
g 43 43 43
-7 B0 -6 B-11 -8
Figure 16. Axial member forces of Model A
ﬂ' Member Forces
Live Load
Menber Fuilkh] | Ff [KN]
B-1 24.3000; -24.3000
B2 32,4000 -32.4000
B3 -32.4000 -32.4000
B-4 24,3000 -24:3000
c7 16,2000 -16.2000
ce 16,2000 16,2000
D-9 29,2080 29,2050
) -10.8000 10,8000,
B0 24.3000 24,3000
B-11 24,3000 24,3000
D-12 29,2050 29,2050
D13 97350 97350
D-14 97350 97350
Table 49. Tabulated axial member forces of Model A
Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80
480 480 { 480 480 | -399
B-2 -3 B-3 -4
R
97
-8 -9 D-14
i il v U o v
- 0 5 RN

Figure 17. Axial member forces of Model B

ﬂ Member Forces
Live Load
Member Fx.i [KN] I F.j [KN]
B-1 -39,8885: -39.8885
B-2 -47.9885 -47.9885/
B-3 -47.9885 -47.9885
B-4 -39.8885 -39.8885]
c7 -16.2000 -16.2000
c-8 -16.2000 -16.2000
D9 29.20500 29.2050
C-3 -10.8000 -10.8000
B-10 24.3000 24.3000
B-11 24.3000 24.3000
D12 29.20500 29.2050
D13 9.7350 9.7350
D-14 9.7350 9.7350
D-15 -31.1769 -31.1769

Table 50. Tabulated axial member forces of Model B

157

Fy=1080 Fy=1080 Fy=1080 Fy=1040
513 513 | 534
Bl e 52 5
6. 15
292 97 .
x]
282 97
> 4
Fra B0 -6 B11
Figure 18. Axial member forces of Model C
ﬂ Member Forces
Live Load
Mermber FuilkKN] | Fxj [KN]
B-1 51,3000 51,3000
B2 -59.4000 59,4000
B3 59,4000 59,4000
B-4 51,3000 51,3000
c7 -16.2000 16,2000
c8 16,2000 16,2000
D4 29,2050 29,2050
c9 10,8000 10,8000
B0 24,3000 24,3000
B11 24,3000 24.3000)
D-12 29,2050 29,2050
D13 97350 97350
D-14 97350 97350
D-15 381838 2381838
Table 51. Tabulated axial member forces of Model C
Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80 Fy=10.80
711 711 792 792 {792 792 ) 711 711
5] 52 3 53 E B4
-16. -TE-
292
8 Ca D14 7 b12
2. i
4 3 3 24
7 B10 NG B -8

Figure 19. Axial member forces of Model D

ﬂ Member Forces

Live Load

Member Fuilkh] | Fiej [KN]
B-1 -71.0654! -71.0854
B-2 -79.1654 -79.1654)
B-3 -79.1654 -79.1654)
B-4 -71.0654 -71.0654,
c7 -16.2000 -16.2000
(] -16.2000 -16.2000
D9 29,2050 29.2050
(] -10.8000 -10.8000
B-10 24.3000 24.3000
B-11 24,3000 24.3000
D12 29,2050 29.2050
D13 97350 9.7350
D-14 97350 97350
D15 54,0000 54,0000

Table 52. Tabulated axial member forces of Model D

Based on the results, it can be observed that the
elements on top of the truss structure exhibited large
axial forces as the inclination of the roller support
increased. This is critical because a larger section or
stiffer design is required for these members.




Nodal Displacements
In figures 20 to 23, the nodal displacements for each
model are displayed. Tables 53 to 56 display the

tabulated nodal displacements of each model.

]{ Fy=10.80 Fy=10.80 Fy=10.80 Fy=10:80 Fy=10:80
0.000 rom ; ; 3 S = 0,289 mm
i 2E-02 mm dx= -0.144 mm, dr= -0.227 mm A

dy =000 mm & —ee8 mm i &o 0430 dy=" 0.000 mm

] 3 ] 14 C7 D12
-8

de= -0.206 mm de= -0.144 mm dx = -8.3E-02 mm
dy= -0.471 mm dy= -0.676 mm dy= -0.471 mm

Figure 20. Nodal displacements of Model A

ﬁ.] MNodal Displacements
Live Load
Node d [rm] dy [mm]
N-1 0.000000 0.000000
N-2 -0.061885 -0.498075
N-3 -0.144397 -0.693896
N-4 -0.226910 -0.498075
N-5 -0.288795 0.000000
N-6 -0.144397 -0.675560
N-7 -0.206282 -0.470571
N-8 -0.082513 -0.470571

Table 53. Tabulated nodal displacements of Model A

i Fy=1080 Fy=10.80 Fy=10.80 Fy=10.80 Fy=1080
E g K % —— 5
0.000 mm 0.448 mm
3 102 mm dx= 0224 mm de= 0346 mm s
dy ="Q000 mm & 52 Sl b e did 50,259 mm
= 3 X} 14 £7 12 Pdn= 0,000 mm
dy= 0.000mm
¥ B8
de= -0.329mm dx= -0.267 mm dx= -0.205 mm
dy = -0.654 mm dy= -0.984 mm dy= -0.784 mm

Figure 21. Nodal displacements of Model B

ﬂ Modal Displacements
Live Load
Mode dx [mm] | dy [rm]
N-1 0.000000 i 0.000000
N-2 -0.101584 0681821
M-3 -0.223795 -1.001840
M-4 -0.346007 0811119
N-5 -0.447530 -0.258536
M-E -0.266895 -0.983804
MN-7 -0.328779 0654317
M-8 -0.205010 -0.783615
N-3 0.000000 0.000000

Table 54. Tabulated nodal displacements of Model B
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]{ Fy=1080 Fy=10.80 Fy=10.80 Fy=10.80 Fy=1080
0,000 : R' ¢ 2
""" o 0131 m = = i 151,564 mm
o] 3 o] B4 7 12 ﬂ; D oo mn
-3 L A
d= -0.438 mm dv= -0.376mm dx= 0.314mm
dy= 0818mm dg= 1267 mm dy= 1.100mm
Figure 22. Nodal displacements of Model C
ﬂ Modal Displacerments
Live Load
MNode d [ram] | dy [mm]
M-1 0.000000 0.000000
M-2 -0.130645 -0.845383
M-3 028918 -1.285372
N-4 0433192 1127437
-5 -0.563837 -0.564107
-6 -0.375936 -1.267036
M-7 0437821 0.817873
M-8 -0.314052 -1.099332
M-3 0.000000 0.000000
Table 55. Tabulated nodal displacements of Model C
J’ Fy=1080 Fy=1080 Fy=10.80 Fy=1080 Fy=10.80
4 5 = T o
m 0.181 mm 04 X o= mm dx DTS mm
@ &= mm il :y = Aoy dy = I8 00 000 ram
L8 3 -9 14 7 12 dy=0.000 mm
5 5 8
di= -0BES mm de= 0,604 mm de= 0562 mm
dy= 1.159mm dy= -1.874 mm dy= -1.822mm

Figure 23. Nodal displacements of Model D

ﬁ] Nodal Displacements
Live Load
Node ds [mm] dy [mm]
N-1 0.000000 0.000000
N-2 -0.180981 -1.186834
N-3 -0.382591 -1.892769
N-4 -0.584201 -1.849771
N-5 -0.765182 -1.325874
N-6 -0.603570 -1.874433
N-7 -0.665455 -1.159330
N-8 -0.541686 -1.822267
N-3 0.000000 0.000000

Table 56. Tabulated nodal displacements of Model D

When designing trusses, the main consideration

would be the nodal displacements since it is
important to limit these variables. The displacements
obtained will determine whether the structure can
sustain the dead loads and live loads that are
imposed on the structure. Most of the time, there are
only limiting values for the displacements before the
design becomes acceptable. In table 57, a comparative
tabulation of the horizontal and vertical



nodal displacements are presented. Also,

a

graphical analysis of the nodal displacements is
presented in Figures 24 and 25.

Model A Model B Model C Model D
y X y X y X y
0 0 0 0 0 0 0 0
-0.062 |-0.498 | -0.102 0.682 |-0.131 |-0.845 | -0.181 | -1.187
-0.144 -0.694 | -0.224 [1.002 | -0.282 | -1.285 | -0.383 | -1.893
-0.227 |-0.498 | -0.346 |-0.811 | -0.433 |-1.127 | -0.584 | -1.850
-0.289 [0 -0.448 0.259 | -0.564 | -0.564 | -0.765 | -1.326
-0.206 |-0.471 | -0.329 [0.654 | -0.438 |-0.818 |-0.665 | -1.159
-0.144 |-0.676 | -0.267 0984 | -0.376 |-1.267 | -0.604 | -1.874
-0.083 |-0.471 | -0.205 [-0.784 | -0.314 |-1.100 | -0.542 | -1.822
Table 57. Tabulated nodal displacements of the four models
B Model A
 Model B
M Model C
Model D
-0.8
-1
Figure 24. Horizontal displacements at each node of the four models
0
Model A
|
Model B
|
Model C
|
Model D
) B

Figure 24. Vertical displacements at each node of the tour models
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6.0 Conclusion

On a theoretical note, the analysis of a plane truss with inclined roller supports may be done using the
conventional Direct Stiffness Method (DSM) when analyzing plane trusses lying on horizontal supports. The
only difference with the computation is that the transformation matrices of members that are connected to the
inclined roller support will vary since the assigned global axes of the node where the inclined roller support is
located are different from the global axes defined for the other nodes of the whole structure. It is important to be
consistent with the defining of the global and local axes of the structure since the angle to be considered in the
transformation matrices will depend on it

For the Graphical Rapid Analysis Software Program (GRASP), direct modeling of the plane truss with inclined
roller supports is not possible. However, an inclined roller support may be represented by a truss element that is
inclined perpendicular to the y-axis of the inclined roller support. It is important to take note that since the
additional truss element is only a representation of the roller support, the area and modulus of elasticity may be
increased to increase the stiffness of the member. With that, it will give more accurate results, which may be
comparable to the results to be obtained using the Direct Stiffness Method.

In conclusion, when designing plane trusses, the main factors that affect the overall stability of the structure
would be the properties of the truss elements such as the modulus of elasticity and the cross-sectional area.
These factors determine the deflections of each node of the truss structure. However, there are other
considerations that affect the stability of the truss structures. These factors include environmental impacts such
as the temperature, as well as the geographical location of the structure. As observed in the case study presented

in section 5, it can be concluded that structures that are supported by an inclined roller support would be
detrimental to the overall stability of the structure. It poses problems to the nodal displacements since the
displacements increase as the slope of the inclined roller support increases.
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