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Abstract. The unemployment rate investigates the relationship between labor market outcomes and
poverty, evaluates the effect of labor market policies and programs, and provides ways to improve their
performance. This study analyzes data-driven regression modeling for the economy, specifically the first-
order linear ordinary differential equation (ODE). Consider a collection of actual data for the Ilocos
Region's unemployment rate and calculate the numerical derivative. Then, a general equation for the first-
order linear ODE is presented, with two parameters that will be determined using regression modeling.
Following that, a loss function is defined as the sum of squared errors to reduce the difference between
estimated and real data in the presence of fluctuations. After this, a loss function is defined as the sum of
squared errors to minimize the differences between estimated and actual data. A set of necessary
conditions is derived, and the regression parameters are analytically determined. Based on these optimal
parameter estimates, the solution of the first-order linear ODE, which matches the actual data trend, shall
be obtained. The observations show that the relationship between the actual data and the adjusted
predicted regression dynamics closely matches. Results also indicate that the new insight includes the
analysis of fluctuations in the unemployment rate for regression modeling dynamics. This research helps
Filipino economists provide insights and inform policy decisions aimed at the labor market, and they can
focus their efforts on improving these indicators to stimulate job creation and reduce unemployment.

Keywords: Unemployment rate; Differential equation; Regression modeling; Parameter estimation; Ilocos
region; Philippines.

1.0 Introduction

The unemployment rate is a key economic indicator used to assess the health of an economy. It tends to fluctuate
with the business cycle, rising during recessions and falling during expansions. It is one of the statistics most
closely monitored by policymakers, investors, and the public (Bondarenko, 2024).

In the Philippines, unemployment and underemployment are the most significant challenges and critical
indicators of economic problems. According to Rutkowski (2015), poverty is primarily caused by the poor's low
earning ability and lack of regular and successful employment opportunities. Behind these are two connected
primary causes of in-work poverty: a lack of education among the poor and an absence of effective employment
opportunities.

The Public Employment Services Office of Pangasinan, Ilocos Region, announced that the unemployment rate in

the province has decreased. Based on the most recent monitoring of PESO Pangasinan as of April 2023, the
unemployment rate of the province decreased, with the working population in the province at 1,950,882, or
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equal to 60%. 56,097 are among the unemployed, or 4.5% unemployed. 1,246,613 are in the labor force, 1,190,515
are employed, and 158,319 are underemployed, or 12.7%.

Currently, there is a dearth of research regarding modeling the unemployment rate in the Ilocos Region.
Although various studies have used the first-order linear ordinary differential equation to help in understanding
and optimizing business systems, there has been minimal research into how the model is utilized in the
employment sector. The research aimed to develop a new model that can track actual data from historical data,
including fluctuations, which would allow it to analyze the trend of the unemployment rate and provide
solutions to the problem of economic system development.

The researcher was motivated by the significance of mathematical modeling, particularly in the dynamics of the
economic system. Future researchers, even students, and teachers, must be knowledgeable about how
mathematical modeling works to help the economic dynamics. Aside from biological ecosystems, the first-order
linear ordinary differential equation for the regression model is most commonly applied in business ecosystems,
where population symbolizes the sales or revenue of products, technology, channels, or enterprises.

2.0 Methodology

2.1 Research Design

This study employed applied mathematics, specifically focusing on the First-Order Linear Ordinary Differential
Equation for Regression Modeling. To achieve the study's objectives, a comprehensive review of related
literature was conducted, encompassing various definitions and methodologies for future reference.

2.2 Data Source

Data were gathered from the Philippines Statistics Authority (PSA), Regional Statistics Services Office I, located
in the City of San Fernando, La Union. Computer software such as Microsoft Excel and MatLab were utilized to
verify calculations and generate graphs to illustrate the actual phenomenon in the regression modeling system.

2.3 Parameter Estimation

Ordinary and partial differential equations are typically used to represent mathematical models of dynamic
processes. They encompass both dependent and independent variables, as well as constants known as
parameters. Dependent variables are often directly measured, while parameter estimates rely on input and
output data. In differential equations, the equation structure and the measurements of the input and initial
conditions are known, but some or all of the parameters may be unknown. The objective is to determine the
optimal estimate of these parameters to effectively describe many phenomena in real-world systems (Wang and
Barber, 2014).

Gaussian process regression (GPR) predicts based on training data, akin to k-Nearest Neighbors. It performs
well with small data sets and provides predictions with uncertainty quantification. Prior mean and covariance
must be specified, with the covariance defined through a kernel object. The kernel hyperparameters are
optimized during fitting by maximizing the log-marginal-likelihood (LML) using the chosen optimizer. Given
that this maximization is non-convex (with many local optima), the optimizer needs to be restarted multiple
times. The first iteration starts with the original hyperparameters, followed by subsequent iterations using
randomly selected hyperparameters from the allowable range (Sit, 2019).

Gaussian processes offer a method for modeling probability distributions over functions. According to Do
(2007), they discuss how probability distributions over functions can be utilized within the framework of

Bayesian regression.

Let S = {(x(i), y(i))}{il be training set of independent and identically distributed examples from some unknown
distribution. In the Gaussian process regression model,

y® =h(xO) +e®,  i=123,..,m
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where the ¢® are independent and identical distributed “noise” variables with independent N'(0,02)
distributions. Similarly, in Bayesian regression, assume a prior distribution over function h(-) in particular,
assume a zero-mean Gaussian process prior,

h()~GP (0, (k(-)
for some valid covariance function (k(:,")).

This study applied Gaussian process regression, a form of machine learning algorithm. Gaussian processes do
not aim to find "best-fit" data models or, in general, "best guess" predictions for additional inputs to the test. The
researcher makes a trial and error for Gaussian Process Regression codes in MatLab online software to
experiment with the parameters to create a second distribution across models or prediction distributions for new
test data. These distributions help in measuring uncertainty in model estimations, improving predictions for
additional test locations, and comparing the solution to the first-order linear ordinary differential equation.

3.0 Results and Discussion
3.1 The Mathematical Model
Consider a set of actual data, given by

Yy ={y1.¥2,¥3 -, ¥n} @
for time t;, i = 1,2, 3, ...,n, where n is the number of data points, and the derivative of data is expressed by

yi=m TV 03 -1, @)

tivi — G

Define a loss function

0 2 ©)
Ao, B) = D ', — = By?,
i=1
with a first-order ordinary differential equation
dy 4)

a=(X+By,

Where a and 8 are unknown parameters, and y is the solution set for the first-order linear ODE in system (4).
Therefore, this problem is referred to as a regression problem with a first-order linear ODE, and the parameters
a and B are known as the regression parameters to be determined later.

Now, consider the gradients of loss function in system (3)

n-1
se _ , ®)
7 = 2 Z(y i — o= Byi),
i=1
n-1
9] (6)
6;; =-2 Z(yi)(y’i — o — Byi),
i=1
Setting these gradients to zero and doing some algebraic manipulations to gain
a=y -py @)
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Yioyilyi = V) ®)

P = S D -7

Substitute @ and B into system (4), we have

dy . - )
ac = Oy
Notice that the analytical solution for system 9 is presented by
3 3 10
(y(‘t)eB(t‘T) —=[1-ePtD], fort>r (10)

so={ )
y(0ePE D + —[efED — 1], fort <t

™ Q) Tl R

for t > t, where § is the estimated point to the actual point in system (1). Thus, system (10) represents the
regression model for the actual data in system (1), which closely tracks the actual data trend. This is done for
mathematical manipulations purposes (Kek, Chen, and Chan 2024).

3.2 Regression Equilibria Analysis and Existence Conditions

In most mathematical models through differential equations, some equations are nonlinear or contain a higher-
order derivative that is difficult and time-intensive to solve (Ming, 2017). According to Khalil (2002), one
technique for assessing the model's behavior is to first identify the stability states or places where the rate of the
dependent variable with respect to the independent variable(s) equals zero. These equilibria represent the points
at which the regression model reaches balance or stability.

For analyzing equilibria in first-order ODEs for regression models, find the values of the independent variables
at which the dependent variable's derivative is zero (Braun, 1983). These points provide insights into the
regression model's long-term behavior or steady states, which aids in understanding the dynamics and stability
of the modeled interaction (Lunt, 2013). Lastly, when dealing with first-order ODEs in regression models, stable
points are those where the dependent variable's rate of change is zero, indicating that the variables' connection is
balanced or stable (Khalil, 2002).

The following mathematical manipulations below represent possible dynamics of the modified model:

Theorem 1.

(Parameter @) If the Use — _p Y-l(y! — o — By,), then the solution of @ = §' — By.

da

Proof: At the system (5), suppose that the right-hand side of the equation is equated to zero, and the solution for
@ that will satisfy this equation is determined. Doing so, system (2) becomes

n-1

—ZZ(y;—a—Byi)=o

i=1

This implies that,
n—-1 n-1 n—-1
—2) yi+ () (—z > ) - (—20([3 > yl> =0
i=1 n=1 n=1
n-1 n-1 n-1
—22y{+2a +2aBZyi=0
i=1 n=1 n=1
Then,

2[-n =Dy +a(n—1)+pB(n—1)y] =0
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According to James (2023) the transition from y{ to §¥' occurs when moving from the individual data points y| to
the mean value y, which can be simplified to

—2n—-1y +2a(n—1)+2(n—-1y=0

(Z(n 1))[ 2(n —1)y" + 2a(n — 1) + 2p(n — 1y = 0]
¥ +a+py=0
—o= -y +By
a=y - By

In the third equality, the researcher simplifies the expression, factors out common terms, and often represents
the entire summation in a more compact form for this instance. The researcher observed that there is a transition
from using the individual term y; to the sample mean §' between the second and third equalities. Initially, this
transition is made to simplify the notation and focus on the average behavior of the system. So, according to
Kutner (2005) y; refers to the rate of change of each individual data point, while ¥ refers to the rate of change to
the mean value.

However, according to Larsen and Marx (2012), in the many mathematical manipulations, it is often useful to
work with average values rather than individual ones. This is where a sample ¥ comes into play. The sample
mean represents the average of the derivatives of data point.

Hence, the solution for intercept a is ¥ — By. Observe that the difference between the mean of the predicted
values of the dependent variable ¥’ and the product of the slope term in the linear regression model  and the
mean of the observation values of the dependent variable y (Fox, 2016).

Theorem 2.

(Parameter B) Show that = a] ¢ = 230y (yi — a— By;), then B = ZizoWDOi V)

TGy

Proof: Evaluating the system (6), the right-hand side of the equation is equated to zero, and the solution for B
that will satisfy this equation is determined, which would give

-2 Z(yl)(yl ~ By =0

(-2)(-) Z v
n-1 n-1 n-1
2D @D +20) yi+2B ) yE =0
i=1 i=1 i=1
Substituting o to §' — By leads to

—zz(yl)(yl)n(y —By)Zyl+ZBZyl =0
—zZ(yl)(yIH(Zy —zsy)ZyIHBZyl =0

n—-1 n-1 n-1 n—-1
—2) GIGD+2) iy =28 ) yig+28 ) yF =0
i=1 i=1 i=1 i=1
n-1 n-1 n-1 n-1
_ZZ(Yi)(Yi,) + ZZYi y' = —ZBny + ZBZyiS’
i=1 i=1 i=1 i=1

-2 Z(yl)(yl) *

+(-2)(- B)Zyl =0
Then

Simplifying further
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-2 [nz_l(Yi)(Yi') - nz_l}’i }_"l =-2 [an_l}’iz - an_f}ﬁ }_’]
i=1 i=1 i=1 i=1
S(yi)(y{) - §Yi y' = Br_liyiz - Br_liyif’

According to Montgomery (2021) both summations are now from i = 0 to n, which includes all relevant terms or
observations. This extension might be done for mathematical convenience or to insure that all data points,
including the first one i = 0, are considered in the derivation. In the dynamics of regression analysis, this
summation typically involves the calculation of the numerator or denominator in the solution for B, where each
term corresponds to a specific data point or observation in the data set.

By cancellation law

Zn:(yi)(y{) - Zn:yi v = B[Zn: yi = Zn:yi 37]
i=0 iz0 i=0 i=0

Finally, obtaining oGO =3I,y v
i=0\Vi/\Vi =071

Loyi = Z‘;in=° viy

I OOICARSA!
im0 —Y)

B=

B=

~ n o yoIy)-v ~
The solution for parameter = %ﬁ;)%] Therefore, when substituting @ and [ into the system (4), the
i=0W1 i~

. . . .dy o5
solution of the rate of chance of y with respect to time is d—i =a + Py.

Theorem 3

The modified model admits two (2) possible analytical solutions for % = @+ By. These are

_ & _
y(1r)ePt-D — E [1—ePtD], fort>1

y© = R a. -
y(1)ePt-D 4 E [eP®D —1], fort<t

where § is the estimated point to the actual point in system (1).

Proof: Suppose that @ and {3 are real numbers

This implies that
dy 43
g - atBy
dt = ———dy
+ By

Then applying the indefinite integral both sides leads to
1
dt= f —d
f o+ By Y
1 A
t+C==In|a+ By|

B
BCt+0) =




Bt+BC =In|a+ By
Since BC is a constant, it follows that
Bt+ C =In|& + By]
Applying the exponential e to both sides
eBt+C — olne [a+Byl

ePteC = @ + By

CePt = @ + By (11)
The expression CePt represents an exponential function where C is a constant and f is another constant raised to
the power of t, a variable (Montgomery, 2021) this function grows or decays exponentially depending on the
sign of B. According to Fox (2016) considering that when & + By > 0, the predicted value is positive, this means
that it falls above the regression line. Conversely, when @ + By < 0, the predicted value is negative, which means
it falls below the regression line.

According to Harrell (2015) in regression analysis, time is usually modeled as a predictor variable with the
potential to be negative. Time is usually considered as a continuous variable that moves in a positive direction,
representing the order of time of observations. However, depending on the point of reference or basis used,
associated with time variables in a dataset may take on negative values.

It is important to note that, even when using a relative time scale, negative values only serve as labels for a
position in time relative to a certain point in time and do not carry the same mathematical importance as
negative numbers in other instances (Chatterjee, and Hadi, 2012). The regression model would continue to
handle time as a continuous variable, with coefficients and predictions interpreted from the specified starting
point.

Considering the following cases:

Case 1. When t > 7 and CePt = & + fy

The equation in system (11) is satisfied, which utilizes as follows
CePt=a+ By

In this case, substitute the system 10.1 to y and simplify the right hand side
A a a a
a+f [y(‘t)eﬁ(t‘ﬂ 3 (1- eB(t_T))]
By distributive property, we have

[@+ By(0ef] + [—(& +p) % (1- eB(t—‘r))]

&+ By(0)eht-9] + {(—a 9 [%(1 - e%—r))]}
Simplifying further
@+ By(0)eBt —a—a(1 — eBt-D)

By(1)ePt-D —g(1 — eBt-D)
Which gives the following

By(T)eBtD — g1 — ePtD]

By()ePt0 = g[1 — ef-D]
Divide to both sides by {3

y(1)ebtD = % [1— eBCt-D]
Finally, obtaining the system (10.1)

y(t)ebt-D — % [1 - ePCt-D]
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The first term y(1)eB®? is the transient or decaying part of the solution, while the second term %[1 - eﬁ(t_T)]

represents the steady state or equilibrium part of the solution. Comparing this with the left-hand side CePt,
observed that the equation holds.

Case 2: When t < T and CeBt = —(@+ By)

Utilizing the system
CePt = —(@+ By)

Substitute the system (10.2) to y

—@+p) [y(‘t)emt_r) + % (eBt-D — 1)]

(—a-B) [y(r)eﬁ“-ﬂ +%(eﬁ“-ﬂ - 1)]
By distributive property,
(2= By@e ]+ |(-a -0 - 1)
Simplifying further
-8 — By(0)eP + —(@— @[TV — 1]
—@ — By()ePE 0 —a + a[ePt — 1]

—By(1)ePtD — a[eﬁ(t—r) - 1]
Which yields the following

—By(1)ePtD = a[eﬁ(t—r) —1]

Divide to both sides —3
y(0)ePtD = — Z[eBt-0 _ 1]
B
Finally, obtaining the system (10.2)
y(0)eBE-D 4 % [P0 — 1]

Therefore, both cases are valid solutions for §(t) given the initial condition y(t) and the parameters @ and B in
the system (11), where t > t.

3.3 The Actual Parameters

To verify the theoretical result, the researcher shows the time series data plot of Unemployment Rate in Ilocos
Region, Philippines quarterly from January 2018 to October 2023. This means that the quarterly rate of
unemployment rate was plotted against time. The time series data plot shown in Figure 1 shows that between
January 2018 and April 2019, the unemployment rate changed moderately. However, in April 2020, there was a
considerable increase, reaching 22.3%, which was most likely due to the economic consequences of the COVID-
19 pandemic, which resulted in big job losses and economic instability. According to Austria (2020), during the
pandemic, the Department of Labor and Employment (DOLE), in collaboration with the Pangasinan Public
Employment Services Office (PESO), recently held the first face-to-face (F2F) job fair, catering to around 300
Pangasinense job seekers. From July 2022 to October 2022, the unemployment rate dropped gradually showing a
job market bounce back as economic activity restarted and economic stimulus strategies were implemented to
help organizations and workers. This declining trend peaked in October 2022, when the unemployment rate
reached its lowest point of 4%. Between January 2023 and October 2023, the unemployment rate remained
stable, ranging between 4.4% and 4.7%. This stability reflects a time of job market equilibrium, in which the
unemployment rate does not significantly increase or fall.
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Figure 1. Time series data plot of unemployment rate in Ilocos Region

Table 1 presents the following values for the derivative of data points.

Table 1. Computations for derivative of data observations

Derivatives of Data Points

y'y 0.6 V13 -1.8
vy -0.8 Y 14 -1.2
y's 0.2 Y'is 21
Va4 -1.5 ¥'16 -1.2
y's 0.7 V17 -1.3
Y's -1 Y'is 038
y', 0.3 V19 -1.1
V's 3.6 V'20 0.5
Yo 135 Va1 0

¥ 10 -11.2 V'22 -0.1
Y 04 Y23 0.3
Y12 2.2 Y24 4.7

For computations in Table 1, the mean of the derivative of data observations y' is —0.2792.

The y'; is the rate of change of the data values with respect to time, calculated as the difference in consecutive
data points divided by the corresponding difference in time intervals, y’; quantifies how the values in the
dependent are changing per unit time at the specific time point t; (Kiusalaas, 2016), and used in the formulation
of the loss function Js.(a,B) to measure the deviation between the estimated derivative and the actual,
contributing to the overall process of estimating the parameters a and § that define the first-order linear ODE
modeling the data.

Mean of the Observation Values Computation:

This means that § = 7.26 reflects a large proportion of data values, serving as a reference point for interpreting
the data's overall behavior. This intercept is the most important variable in the model since it represents the
beginning point of the relationship between the variables (Mali, 2024). According to Mariotti (2023) this can help
improve the model's performance and interpretability while also providing insights regarding its goodness of fit
and the need for further development or adjustment. This implies that the intercept value can help determine
the need for more model development to better fit the observed data and connection.
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Mean of the Derivatives of Data Computation:

This means that, on average, -0.2792 values in the dependent variable decrease in the data over time at a rate of
around -0.2792 units per unit of time. The negative derivative is important for understanding the overall
behavior of the system. According to Tedeshi (2023), this serves as crucial for understanding the underlying
dynamics of the system being modeled and can help influence the selection of appropriate modeling techniques
or assumptions. The data suggests the mean derivative value of —0.2792 serves as an initial point for this loss
function, which is important to the overall process of estimating a and 8, which represent the first-order linear
ODE model of the data.

According to Solak (2022) observed function values and derivatives may have changing noise levels, which are
compensated for by introducing diagonal contributions with adjusted hyper parameters. Inference and
prediction are done as usual. This strategy was used to learn in dynamic systems.

Table 2 shows the minimization and computations for parameter B, including the numerator and the
denominator.

TG -]

Table 2. Minimization and Computations for f =
timzatt putatt P = o

Time () Derivative of Data Observation Numerator Denominator
1 0.6 5.890439 -3.6570811
2 -0.8 -3.802059 0.3954191
3 0.2 3.114605 -4.8479145
4 -15 -8.179561 -3.6570811
5 0.7 5.091684 -10.6383316
6 -1 -4.252897 -7.9404147
7 0.3 2.837933 -11.4945817
8 3.6 20.171684 -10.6383316
9 13.5 121.256696 13.6766696
10 -11.2 -243.534509 335.7079241
11 04 7.538787 427812537
12 2.2 -22.089545 48.9229205
13 -1.8 -14.143719 19.1037531
14 -1.2 -6.906225 1.9062525
15 21 14.988771 -5.9587479
16 -1.2 -7.734972 9.6950028
17 -1.3 -7.349976 -0.3299976
18 -0.8 -3.072897 -7.9404147
19 -1.1 -4.186233 -10.9437483
20 0.5 3.11668 -12.983332
21 0 1.256265 -12.3562485
22 -0.1 0.806265 -12.3562485
23 0.3 2.548348 -12.5216652
24 -4.7 -20.777901 -11.9654151
SUM > yi=-0.27917 > o0I07) — 71 = ~157.412337 ) (3)(yi — 7) = 331.9596413
i=0 i=0 i=0

B Computation:

- nDIYD) -§] —157.412337
B — 1_I?(Y1)[(Y1) _Y] _ ~ —0474
oD@ —Y) 331.9596413

This means that the value of B ~ —0.474 represents the coefficient of the variable y in the first-order linear
ordinary differential equation. A negative value for B indicates that the rate of change of y with respect to time is
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inversely related to the current value of y (Boyce, 2024). In simpler terms, as y increases, the rate of change of y
decreases, and vice versa.

o Computation:
a=y —By=-0.27917 — (—0.474)(7.245833) ~ 3.1568

This means that the value of @ = 3.1568 corresponds to the constant term in the first-order linear ordinary
differential equation. It indicates the starting point for the rate of change of y over time, regardless of y's current
value.

In the simulation result show that the general equation for the first-order linear ordinary differential equation
model for the unemployment rate in Ilocos Region from January 2018 to October 2023 quarterly is

d
d_}t, = 3.1620 — 0.474y (12)

and the specific solution of the first-order linear ODE is

3.1620 (13)

& — -0.474(t-1) _ A—0.474(t—-1)
90 = y(@e +oaralle |

To verify the solution of the first-order linear ODE, the researcher proves the initial condition 6.7 at T = 0. The
standard form of the system (4) for differential equations in a first-order linear ordinary differential equation

Y 0496y = 31620
gt TR =

By using an integrating factor. The integrating factor is

ef 0.474dt _ 0.474t

Multiply both sides of the differential equation by the integrating factor
ef 0.474t% + 0.474¢f 0.4-74-ty = 3.1620e0-474t

Now, the left-hand side can be expressed as the derivative of the product of the integrating factor and the

dependent variable y.

d
aef 0.474ty = 3.1620e0%-474t

Integrate both sides with respect to t

f %ef 0474ty — f 3.1620e%474t dt

. at l at _
By applying the formula [e™ = e +C, wherea = 0.34;2.25 follows that

Jo0.474t, 0.474t
Y=g e

Multiply to both sides of the equations ﬁ

= 0.474
Y = g7 (6:670970464e474 + O)

Finally, obtaining
y(t) = 6.670970464 + Ce™ 0474t

Solving for the value of Cwhen t = 0 yields to
y(0) = 6.670970464 + Ce~0474(0)
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Substituting y(0) to 6.7, gives
6.7 = 6.670970464 + Ce~%474(0)
6.7 = 6.670970464 + C
C = 0.02902953586

Solving the initial condition y(0), when C = 0.02902953586
y(0) = 6.670970464 + 0.02902953586e~0474(0)
y(0) = 6.670970464 + 0.02902953586
y(0) = 6.7
The theorem below presents the initial value, which gives us the solution for the first-order linear ordinary
differential equation at the given time.

Theorem 4.
(Initial condition) Show that if the initial condition y(0) = 6.7, thent = 0 for t > .

Proof:
Consider the solution of the first-order linear ODE in the system (13)

3.1620
S — —0.474(t-T)
7O = y(e e

[1 _ e—0.474(t—r)]

Since §(0) = y(t) = 6.7, this implies that
6.7 = 6.7e70474"D) 1 6,670970464[1 — e 04741

Substituting e %474t~ to x, leads to
6.7 = 6.7x + 6.670970464[1 — x]

Which can be simplified to
6.7 = 6.7x + 6.670970464 — 6.670970464x
6.7 = 6.670970464 — 0.02902953586x
6.7 — 6.670970464 = —0.02902953586x
—0.02902953586 = —0.02902953586x

Obtaining

When t = 0, then having

e0474(0-0 — 1
Applying the natural logarithmic to the both sides
—0.474(-1t) =In1
0.474t=1In1
=0

Hence, when t = 0, this relationship holds true as time passes with t moving forward the initial time point t. To
summarize the result when t = 0 for t > T, this means that, the situation where time starts from zero at some
point beyond the initial observation time t and observing the system at a moment in time strictly greater that t.

The initial value for the solution of a first-order linear ODEif t =0and t = 0 is

3.1620 (14)

— —-0.474(0-7) 1 — @—0474(0-1)
y(0) = 6.7¢ + 0_474[ e ]
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Using the parameter values from the ODE solution, the researcher graphs the ODE system's direction fields
using MatLab software. This means that the direction fields are required to explain the behavior of the system
given such parameters.

Figure 2 shows the dynamics between the actual data and the solution for the first-order linear ordinary
differential equation. Using MatLab, the researcher graphs both the direction field and the ODE solution,
indicating the direction of all system solutions. Using the direction field, the researcher generated a solution
curve with an initial condition of 6.7. As the initial point moves along a solution curve, observe how the
relationship between x and y changes over time. Notice that the curve looks to be closed in the sense that the
value of approximately 6.67089 remains stable as time passes. Using the ODE solution, the researcher graphs
using the Gaussian process regression with adjusted prediction regression dynamics system’s direction fields
using MatLab software. This means that the direction fields optimize the regression parameters to achieve the
best-fit behavior in the presence of fluctuation from the system's real data given such parameters.
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Figure 2. Actual data and solution for the first-order linear ODE of unemployment rate

Figure 3 reveals the behavior of the adjusted prediction with dynamic regression parameter direction fields. By
adjusting the regression parameter based on dynamic changes in the unemployment rate, the adjusted values
seek to increase model accuracy by considering changing dynamics over time. The GPR with adjusted prediction
uses dynamic regression parameter dynamics to extract a more consistent trend from unemployment rate data,
facilitating the detection of long-term trends while limiting the impact of short-term fluctuations.

24 T — T T

—O— Actual
22+ Adjusted Prediction |
20t 4

=
(o)

=y
(3]

=y
381

Unemployment Rate
=

=y
o

Time (t)

Figure 3. Actual data and adjusted prediction of unemployment rate
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This means that the behavior of Gaussian Process Regression (GPR) with adjusted predictions can have a
significant impact on unemployment rates in the Ilocos region. Policy effectiveness is how well the GPR model
forecasts unemployment rates, which can help policymakers evaluate the efficacy of current regional
unemployment-reduction measures. By comparing GPR forecasts to actual rates, policymakers can determine
whether their policies are having the desired effect. The Early Warning System means that the GPR predictions
can serve as an early warning system for potential increases in unemployment, allowing policymakers to
proactively implement interventions or adjust policies to mitigate negative economic impacts. Investment
planning means that businesses and investors can use GPR predictions to inform investment decisions in the
Ilocos Region. Understanding future unemployment trends can help businesses anticipate labor market
conditions and adjust their hiring and expansion plans accordingly. The social implications are that
unemployment rates have social implications, including impacts on individual well-being, family stability, and
community cohesion. Economic development means that the behavior of the GPR model can provide insights
into the broader economic dynamics of the Ilocos Region. By understanding how unemployment rates fluctuate
over time, policymakers can tailor economic development strategies to promote job creation and sustainable
growth. Policy evaluation means that analyzing the relationship between GPR predictions and actual
unemployment rates can facilitate the evaluation of past policy interventions. By assessing how well predictions
align with outcomes, policymakers can identify areas where policies may need adjustment or improvement.

The economic relevance of the decrease in the unemployment rate over time suggests an improvement in the
region's economic conditions. When unemployment decreases, it indicates that more people are finding jobs,
leading to increased consumer spending, higher productivity, and overall economic growth. Gaussian Process
Regression (GPR) with adjusted predictions is relevant in this context as it offers a statistical method to analyze
and predict trends in data, such as the unemployment rate. By using historical data, GPR can model the
relationship between time and the unemployment rate, enabling policymakers and economists to make more
accurate forecasts and decisions. Policymakers can assess the effectiveness of their unemployment-reduction
programs and actions by comparing GPR projections to actual unemployment rates. Furthermore, GPR can
assist policymakers in identifying probable causes impacting unemployment patterns, allowing them to execute
tailored measures to address specific labor market concerns. In conclusion, studying the unemployment rate in
conjunction with GPR and adjusted forecasts provides useful insights into the region's economic trends. This
enables more informed decision-making and policy formation to boost economic success and reduce
unemployment.

The figures below represent the study's findings: a comparison of the ODE model and the modified adjusted
prediction using dynamic regression.
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Figure 4a shows the Ilocos Region's unemployment rate as well as the solution to the first-order linear ODE
model. Prior to applying the modified regression ability, their values appeared to be different. The blue line
represents the actual data curve, and the red line is the solution to the first-order linear ODE model, also known
as the predicted curve. Figure 4b shows a satisfactory curve-fitting result, with the projected solution matching
the actual data trend.

Computation for comparison of the root mean square error (RMSE) between the ODE solution and the adjusted
prediction. The root mean squared error (RMSE) is a measure of the differences between values predicted by a
model and the values actually observed.

RMSE ODE Solution Computation:

339.8808617
RMSE = By — ~ 3.7632

On average, the estimated values from the ODE solution are approximately 3.76 units off from the actual
observed values. It means that the ODE solution makes an average error of approximately 3.76 units in
predicting the observed values.

RMSE Adjusted Prediction Computation:

13.37647664
RMSE = By — ~ 0.74656

An RMSE of approximately 0.75 indicates that the modified predictions are greater than the actual observed
values by only 0.75 units on average, indicating that the model fits the data accurately.

This means that the lower RMSE for the adjusted prediction model signifies improved prediction accuracy,
better alignment with the observed data, and enhanced reliability for decision-making purposes. It indicates that
the model, incorporating additional predictors, provides a more accurate representation of the relationship
between variables and can make precise predictions.

4.0 Conclusion

The findings discussed in this study show that the researcher has made significant contributions to increasing
our understanding of regression systems and their real-world applications. The comprehensive explanations for
formulating regression equilibrium points and stability conditions will help readers better understand ordinary
differential equations (ODEs) and regression systems. The researcher developed four theorems for analyzing
parameter solutions such as § and @&, as well as the regression model for actual data and initial conditions, to
show the mathematical analysis's accuracy and completeness. Furthermore, using MATLAB simulations to
check the model's stability and existence, as well as closely tracking actual data, demonstrate the suggested
technique's real-world relevance and reliability. Furthermore, the availability of actual data demonstrates the
relevance of mathematical modeling to real-world circumstances, indicating that the study has the potential to
guide solutions to local challenges such as the Ilocos Region's unemployment rate.

The findings of this applied mathematics study have important implications for addressing economic
challenges, particularly unemployment, in the Ilocos Region. The capacity to model and evaluate unemployment
rate trends using regression systems and equilibrium instances can help policymakers and economists gain a
better understanding of the underlying reasons for employment shifts, allowing them to design more targeted
and successful interventions. The model's successful dynamic simulation, in which changed forecasts closely
matched the actual data, implies that this modeling methodology can be used to anticipate and predict future
unemployment patterns, allowing for the development of more informed economic plans and activities. Besides,
identifying regression equilibrium points and conditions of stability can help determine the primary factors
impacting the unemployment rate, allowing for more focused policy decisions and resource allocation to
address the underlying reasons. Additionally, the interdisciplinary method, which combines mathematical
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analysis, modeling tools, and real-world data, can be used to investigate and address a broader range of
economic issues, including labor market dynamics, income distribution, and the impact of economic policies on
various sectors. Overall, the findings show how rigorous mathematical modeling can provide useful insights
and practical applications for bridging the gap between theoretical economic notions and evidence-based,
successful economic policymaking.

The researcher's recommendations based on the conclusions obtained include several important aspects that
focus on using the insights obtained from mathematical modeling and analysis of unemployment rate changes
in the Ilocos Region to guide more effective authorities and economic actions. First, the researcher proposes that
elected authorities and economists use their insight into the underlying reasons for employment trends to build
specialized and focused plans to address the unemployment problem. Second, the successful simulation of the
model, in which the updated forecasts nearly matched the actual data, indicates the modeling framework's
ability to predict future unemployment trends, allowing for preventive economic planning and appropriate
interventions. Third, choosing regression equilibrium points and stability needs can help determine the key
variables impacting the unemployment rate, guide resource allocation, and guide the design of initiatives to
address the core causes. Furthermore, the researcher suggests broadening the interdisciplinary approach by
combining mathematical computations, modeling tools, and real-world data to investigate and address a
broader range of economic issues other than unemployment, such as labor market dynamics, income
distribution, and the impact of economic policies. Finally, the researcher underlines how mathematical modeling
may bridge the gap between theoretical economic notions and actual, evidence-based policymaking, resulting in
more informed and effective economic initiatives and activities.
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