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Abstract. The unemployment rate investigates the relationship between labor market outcomes and 
poverty, evaluates the effect of labor market policies and programs, and provides ways to improve their 
performance. This study analyzes data-driven regression modeling for the economy, specifically the first-
order linear ordinary differential equation (ODE). Consider a collection of actual data for the Ilocos 
Region's unemployment rate and calculate the numerical derivative. Then, a general equation for the first-
order linear ODE is presented, with two parameters that will be determined using regression modeling. 
Following that, a loss function is defined as the sum of squared errors to reduce the difference between 
estimated and real data in the presence of fluctuations. After this, a loss function is defined as the sum of 
squared errors to minimize the differences between estimated and actual data. A set of necessary 
conditions is derived, and the regression parameters are analytically determined. Based on these optimal 
parameter estimates, the solution of the first-order linear ODE, which matches the actual data trend, shall 
be obtained. The observations show that the relationship between the actual data and the adjusted 
predicted regression dynamics closely matches. Results also indicate that the new insight includes the 
analysis of fluctuations in the unemployment rate for regression modeling dynamics. This research helps 
Filipino economists provide insights and inform policy decisions aimed at the labor market, and they can 
focus their efforts on improving these indicators to stimulate job creation and reduce unemployment. 

Keywords: Unemployment rate; Differential equation; Regression modeling; Parameter estimation; Ilocos 
region; Philippines. 

1.0 Introduction 
The unemployment rate is a key economic indicator used to assess the health of an economy. It tends to fluctuate 
with the business cycle, rising during recessions and falling during expansions. It is one of the statistics most 
closely monitored by policymakers, investors, and the public (Bondarenko, 2024). 

In the Philippines, unemployment and underemployment are the most significant challenges and critical 
indicators of economic problems. According to Rutkowski (2015), poverty is primarily caused by the poor's low 
earning ability and lack of regular and successful employment opportunities. Behind these are two connected 
primary causes of in-work poverty: a lack of education among the poor and an absence of effective employment 
opportunities. 

The Public Employment Services Office of Pangasinan, Ilocos Region, announced that the unemployment rate in 
the province has decreased. Based on the most recent monitoring of PESO Pangasinan as of April 2023, the 
unemployment rate of the province decreased, with the working population in the province at 1,950,882, or 
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equal to 60%. 56,097 are among the unemployed, or 4.5% unemployed. 1,246,613 are in the labor force, 1,190,515 
are employed, and 158,319 are underemployed, or 12.7%. 
 
Currently, there is a dearth of research regarding modeling the unemployment rate in the Ilocos Region. 
Although various studies have used the first-order linear ordinary differential equation to help in understanding 
and optimizing business systems, there has been minimal research into how the model is utilized in the 
employment sector. The research aimed to develop a new model that can track actual data from historical data, 
including fluctuations, which would allow it to analyze the trend of the unemployment rate and provide 
solutions to the problem of economic system development. 
 
The researcher was motivated by the significance of mathematical modeling, particularly in the dynamics of the 
economic system. Future researchers, even students, and teachers, must be knowledgeable about how 
mathematical modeling works to help the economic dynamics. Aside from biological ecosystems, the first-order 
linear ordinary differential equation for the regression model is most commonly applied in business ecosystems, 
where population symbolizes the sales or revenue of products, technology, channels, or enterprises. 
 

2.0 Methodology 
2.1 Research Design 
This study employed applied mathematics, specifically focusing on the First-Order Linear Ordinary Differential 
Equation for Regression Modeling. To achieve the study's objectives, a comprehensive review of related 
literature was conducted, encompassing various definitions and methodologies for future reference. 
 
2.2 Data Source 
Data were gathered from the Philippines Statistics Authority (PSA), Regional Statistics Services Office I, located 
in the City of San Fernando, La Union. Computer software such as Microsoft Excel and MatLab were utilized to 
verify calculations and generate graphs to illustrate the actual phenomenon in the regression modeling system. 
 
2.3 Parameter Estimation 
Ordinary and partial differential equations are typically used to represent mathematical models of dynamic 
processes. They encompass both dependent and independent variables, as well as constants known as 
parameters. Dependent variables are often directly measured, while parameter estimates rely on input and 
output data. In differential equations, the equation structure and the measurements of the input and initial 
conditions are known, but some or all of the parameters may be unknown. The objective is to determine the 
optimal estimate of these parameters to effectively describe many phenomena in real-world systems (Wang and 
Barber, 2014). 
 
Gaussian process regression (GPR) predicts based on training data, akin to k-Nearest Neighbors. It performs 
well with small data sets and provides predictions with uncertainty quantification. Prior mean and covariance 
must be specified, with the covariance defined through a kernel object. The kernel hyperparameters are 
optimized during fitting by maximizing the log-marginal-likelihood (LML) using the chosen optimizer. Given 
that this maximization is non-convex (with many local optima), the optimizer needs to be restarted multiple 
times. The first iteration starts with the original hyperparameters, followed by subsequent iterations using 
randomly selected hyperparameters from the allowable range (Sit, 2019). 
 
Gaussian processes offer a method for modeling probability distributions over functions. According to Do 
(2007), they discuss how probability distributions over functions can be utilized within the framework of 
Bayesian regression. 
 

Let 𝑆 = {(𝑥(𝑖), 𝑦(𝑖))}𝑖=1
𝑚  be training set of independent and identically distributed examples from some unknown 

distribution. In the Gaussian process regression model, 
 

𝑦(𝑖) = ℎ(𝑥(𝑖)) + 𝜀(𝑖),       𝑖 = 1,2,3, … ,𝑚 
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where the 𝜀(𝑖) are independent and identical distributed “noise” variables with independent 𝒩(0, 𝜎2) 
distributions. Similarly, in Bayesian regression, assume a prior distribution over function ℎ(∙) in particular, 
assume a zero-mean Gaussian process prior, 
 

ℎ(∙)~𝒢𝒫(0, (𝑘(∙,∙)) 
 
for some valid covariance function (𝑘(∙,∙)). 
 
This study applied Gaussian process regression, a form of machine learning algorithm. Gaussian processes do 
not aim to find "best-fit" data models or, in general, "best guess" predictions for additional inputs to the test. The 
researcher makes a trial and error for Gaussian Process Regression codes in MatLab online software to 
experiment with the parameters to create a second distribution across models or prediction distributions for new 
test data. These distributions help in measuring uncertainty in model estimations, improving predictions for 
additional test locations, and comparing the solution to the first-order linear ordinary differential equation. 

 
3.0 Results and Discussion 
3.1 The Mathematical Model 
Consider a set of actual data, given by 
 

y = {y1, y2, y3, … , yn}, (1) 
 
for time ti, i = 1, 2, 3, … , n, where n is the number of data points, and the derivative of data is expressed by 
 

y′i =
yi+1 − yi
ti+1 − ti

, t = 1, 2, 3, … , n − 1, (2) 

 
Define a loss function  
 

∂Jse(α, β) =∑(y′
i
− α − βyi)

2

n

i=1

, 
(3) 

 
with a first-order ordinary differential equation  
 

dy

dt
= α + βy, 

(4) 

     
Where α and β are unknown parameters, and y is the solution set for the first-order linear ODE in system (4). 
Therefore, this problem is referred to as a regression problem with a first-order linear ODE, and the parameters 
α and β are known as the regression parameters to be determined later. 
 
Now, consider the gradients of loss function in system (3) 
 

∂Jse
∂α

= −2∑(y′
i
− α − βyi),

n−1

i=1

 
(5) 

 

∂Jse
∂β

= −2∑(yi)(y
′
i
− α − βyi),

n−1

i=1

 
(6) 

      
Setting these gradients to zero and doing some algebraic manipulations to gain 
 

α̂ = y̅′ − β̂y̅, (7) 
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β̂ =
∑ yi(yi

′ − y̅′)n
i=0

∑ (yi)(yi − y̅)
n
i=0

, 
(8) 

 

Substitute α̂ and β̂ into system (4), we have 
dy

dt
= α̂ + β̂y, 

(9) 

 
 
Notice that the analytical solution for system 9 is presented by 
 

ŷ(t) =

{
 
 

 
 y(τ)eβ̂(t−τ) −

α̂

β̂
[1 − eβ̂(t−τ)],   for t > τ

y(τ)eβ̂(t−τ) +
α̂

β̂
[eβ̂(t−τ) − 1],   for t < τ

 

(10) 

 
for t > τ, where ŷ is the estimated point to the actual point in system (1). Thus, system (10) represents the 
regression model for the actual data in system (1), which closely tracks the actual data trend. This is done for 
mathematical manipulations purposes (Kek, Chen, and Chan 2024). 
 
3.2 Regression Equilibria Analysis and Existence Conditions  
In most mathematical models through differential equations, some equations are nonlinear or contain a higher-
order derivative that is difficult and time-intensive to solve (Ming, 2017). According to Khalil (2002), one 
technique for assessing the model's behavior is to first identify the stability states or places where the rate of the 
dependent variable with respect to the independent variable(s) equals zero. These equilibria represent the points 
at which the regression model reaches balance or stability. 
 
For analyzing equilibria in first-order ODEs for regression models, find the values of the independent variables 
at which the dependent variable's derivative is zero (Braun, 1983). These points provide insights into the 
regression model's long-term behavior or steady states, which aids in understanding the dynamics and stability 
of the modeled interaction (Lunt, 2013). Lastly, when dealing with first-order ODEs in regression models, stable 
points are those where the dependent variable's rate of change is zero, indicating that the variables' connection is 
balanced or stable (Khalil, 2002). 
The following mathematical manipulations below represent possible dynamics of the modified model: 
 
Theorem 1.  

(Parameter α̂)  If the 
∂Jse

∂α
= −2∑ (yi

′ − α − βyi)
n−1
i=1 , then the solution of α̂ = y̅′ − β̂y̅. 

 
Proof: At the system (5), suppose that the right-hand side of the equation is equated to zero, and the solution for 
α̂ that will satisfy this equation is determined. Doing so, system (2) becomes 
 

−2∑(yi
′ − α − βyi)

n−1

i=1

= 0 

This implies that, 

−2∑yi
′ +

n−1

i=1

(−α)(−2∑⬚

n−1

n=1

) − (−2αβ∑yi

n−1

n=1

) = 0 

−2∑yi
′ +

n−1

i=1

2α∑+

n−1

n=1

2αβ∑yi = 0

n−1

n=1

 

Then, 

2[−(n − 1)y̅′ + α(n − 1) + β(n − 1)y]̅ = 0 
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According to James (2023) the transition from yi
′ to y̅′ occurs when moving from the individual data points yi

′ to 
the mean value y̅, which can be simplified to 
 

−2(n − 1)y̅′ + 2α(n − 1) + 2β(n − 1)y̅ = 0 

(
1

2(n−1)
) [−2(n − 1)y̅′ + 2α(n − 1) + 2β(n − 1)y̅ = 0] 

−y̅′ + α + βy̅ = 0 
−α = −y̅′ + βy̅ 
α̂ = y̅′ − βy̅ 

 
In the third equality, the researcher simplifies the expression, factors out common terms, and often represents 
the entire summation in a more compact form for this instance. The researcher observed that there is a transition 
from using the individual term yi

′ to the sample mean y̅′ between the second and third equalities. Initially, this 
transition is made to simplify the notation and focus on the average behavior of the system. So, according to 
Kutner (2005) yi

′ refers to the rate of change of each individual data point, while y̅ refers to the rate of change to 
the mean value.  
 
However, according to Larsen and Marx (2012), in the many mathematical manipulations, it is often useful to 
work with average values rather than individual ones. This is where a sample y̅′ comes into play. The sample 
mean represents the average of the derivatives of data point.  
 
Hence, the solution for intercept α is y̅′ − βy̅. Observe that the difference between the mean of the predicted 
values of the dependent variable y̅′ and the product of the slope term in the linear regression model β and the 
mean of the observation values of the dependent variable y̅ (Fox, 2016). 
 
Theorem 2.  

(Parameter β̂) Show that 
∂Jse

∂β
= −2∑ (yi)(yi

′ − α − βyi)
n−1
i=1 , then β̂ =

∑ (yi)(yi
′−y̅′)n

i=0

∑ (yi)(yi−y̅)
n
i=0

. 

 

Proof:  Evaluating the system (6), the right-hand side of the equation is equated to zero, and the solution for β̂ 
that will satisfy this equation is determined, which would give 

−2∑(yi)(yi
′ − α − βyi)

n−1

i=1

= 0 

−2∑(yi)(yi
′) + [(−2)(−α)∑yi

n−1

i=1

] + (−2)(−β)∑yi
2

n−1

i=1

= 0

n−1

i=1

 

Then 

−2∑(yi)(yi
′) + 2α∑yi

n−1

i=1

+ 2β∑yi
2

n−1

i=1

= 0

n−1

i=1

 

Substituting α to y̅′ − βy̅ leads to 

−2∑(yi)(yi
′) + 2(y̅′ − βy̅)∑yi

n−1

i=1

+ 2β∑yi
2

n−1

i=1

= 0

n−1

i=1

 

−2∑(yi)(yi
′) + (2y̅′ − 2βy̅)∑yi

n−1

i=1

+ 2β∑yi
2

n−1

i=1

= 0

n−1

i=1

 

Simplifying further 

−2∑(yi)(yi
′) + 2∑yi

n−1

i=1

y̅′ − 2β∑yi

n−1

i=1

y̅ + 2β∑yi
2

n−1

i=1

= 0

n−1

i=1

 

−2∑(yi)(yi
′) + 2∑yi

n−1

i=1

y̅′ = −2β∑yi
2

n−1

i=1

+ 2β∑yi

n−1

i=1

y̅

n−1

i=1
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−2 [∑(yi)(yi
′)

n−1

i=1

−∑yi

n−1

i=1

y̅′] = −2 [β∑yi
2

n−1

i=1

− β∑yi

n−1

i=1

y̅] 

By cancellation law 

∑(yi)(yi
′) −∑yi

n−1

i=1

y̅′ = β∑yi
2

n−1

i=1

− β∑yi

n−1

i=1

y̅

n−1

i=1

 

 
According to Montgomery (2021) both summations are now from i = 0 to n, which includes all relevant terms or 
observations. This extension might be done for mathematical convenience or to insure that all data points, 
including the first one i = 0, are considered in the derivation. In the dynamics of regression analysis, this 

summation typically involves the calculation of the numerator or denominator in the solution for β̂, where each 
term corresponds to a specific data point or observation in the data set. 
 
 

∑(yi)(yi
′) −∑yi

n

i=0

y̅′ = β̂ [∑yi
2

n

i=0

−∑yi

n

i=0

y̅]

n

i=0

 

 
 
Finally, obtaining 

β̂ =
∑ (yi)(yi

′) − ∑ yi
n
i=0 y̅′n

i=0

∑ yi
2n

i=0 − ∑ yi
n
i=0 y̅

 

β̂ =
∑ (yi)[(yi

′) − y̅′]n
i=0

∑ (yi)(yi
n
i=0 − y̅)

 

 

The solution for parameter β̂= 
∑ (yi)[(yi

′)−y̅′]n
i=0

∑ (yi)(yi
n
i=0 −y̅)

. Therefore, when substituting α̂ and β̂ into the system (4), the 

solution of the rate of chance of y with respect to time is 
dy

dt
= α̂ + β̂y.  

 
Theorem 3 

The modified model admits two (2) possible analytical solutions for 
dy

dt
= α̂ + β̂y. These are 

 

ŷ(t) =

{
 
 

 
 y(τ)eβ̂(t−τ) −

α̂

β̂
[1 − eβ̂(t−τ)],   for t > τ

y(τ)eβ̂(t−τ) +
α̂

β̂
[eβ̂(t−τ) − 1],   for t < τ

  

 
where ŷ is the estimated point to the actual point in system (1). 
 

Proof: Suppose that  α̂ and β̂ are real numbers 
 
This implies that 

dy

dt
= α̂ + β̂y 

dt =
1

α̂ + β̂y
dy 

 
Then applying the indefinite integral both sides leads to  

∫dt = ∫
1

α̂ + β̂y
dy 

t + C =
1

β̂
ln |α̂ + β̂y| 

β̂(t + C) = ln |α̂ + β̂y| 
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β̂t + β̂C = ln |α̂ + β̂y| 

Since β̂C is a constant, it follows that 

β̂t + C = ln |α̂ + β̂y| 
Applying the exponential e to both sides 

eβ̂t+C = elne |α̂+β̂y| 

eβ̂teC = α̂ + β̂y 
 

Ceβ̂t = α̂ + β̂y (11) 

The expression Ceβ̂t represents an exponential function where C is a constant and β̂ is another constant raised to 
the power of t, a variable (Montgomery, 2021) this function grows or decays exponentially depending on the 

sign of β̂. According to Fox (2016) considering that when α̂ + β̂y > 0, the predicted value is positive, this means 

that it falls above the regression line. Conversely, when α̂ + β̂y < 0, the predicted value is negative, which means 
it falls below the regression line. 
 
According to Harrell (2015) in regression analysis, time is usually modeled as a predictor variable with the 
potential to be negative. Time is usually considered as a continuous variable that moves in a positive direction, 
representing the order of time of observations. However, depending on the point of reference or basis used, 
associated with time variables in a dataset may take on negative values. 
 
It is important to note that, even when using a relative time scale, negative values only serve as labels for a 
position in time relative to a certain point in time and do not carry the same mathematical importance as 
negative numbers in other instances (Chatterjee, and Hadi, 2012). The regression model would continue to 
handle time as a continuous variable, with coefficients and predictions interpreted from the specified starting 
point. 
 
Considering the following cases: 
 

Case 1. When 𝑡 > 𝜏 and 𝐶𝑒𝛽̂𝑡 = 𝛼̂ + 𝛽̂𝑦 
 
The equation in system (11) is satisfied, which utilizes as follows 

Ceβ̂t = α̂ + β̂y 
 
In this case, substitute the system 10.1 to y and simplify the right hand side 

α̂ + β̂ [y(τ)eβ̂(t−τ) −
α̂

β̂
(1 − eβ̂(t−τ))] 

By distributive property, we have 

[α̂ + β̂y(τ)eβ̂(t−τ)] + [−(α̂ + β̂)
α̂

β̂
(1 − eβ̂(t−τ))] 

[α̂ + β̂y(τ)eβ̂(t−τ)] + {(−α̂ − β̂) [
α̂

β̂
(1 − eβ̂(t−τ))]} 

Simplifying further 

α̂ + β̂y(τ)eβ̂(t−τ) − α̂ − α̂(1 − eβ̂(t−τ)) 

β̂y(τ)eβ̂(t−τ) − α̂(1 − eβ̂(t−τ)) 

Which gives the following 

β̂y(τ)eβ̂(t−τ) − α̂[1 − eβ̂(t−τ)] 

β̂y(τ)eβ̂(t−τ) = α̂[1 − eβ̂(t−τ)] 

Divide to both sides by β̂ 

y(τ)eβ̂(t−τ) =
α̂

β̂
[1 − eβ̂(t−τ)] 

Finally, obtaining the system (10.1)  

y(τ)eβ̂(t−τ) −
α̂

β̂
[1 − eβ̂(t−τ)] 
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The first term y(τ)eβ̂(t−τ) is the transient or decaying part of the solution, while the second term 
α̂

β̂
[1 − eβ̂(t−τ)] 

represents the steady state or equilibrium part of the solution. Comparing this with the left-hand side Ceβ̂t, 
observed that the equation holds. 
 

Case 2: When 𝑡 < 𝜏 and 𝐶𝑒𝛽̂𝑡 = −(𝛼̂ + 𝛽̂𝑦) 
 
Utilizing the system 

Ceβ̂t = −(α̂ + β̂y) 
 
Substitute the system (10.2) to y 

−(α̂ + β̂) [y(τ)eβ̂(t−τ) +
α̂

β̂
(eβ̂(t−τ) − 1)] 

(−α̂ − β̂) [y(τ)eβ̂(t−τ) +
α̂

β̂
(eβ̂(t−τ) − 1)] 

By distributive property,  

[(−α̂ − β̂)y(τ)eβ̂(t−τ)] + [(−α̂ − β̂)
α̂

β̂
(eβ̂(t−τ) − 1)] 

Simplifying further 

−α̂ − β̂y(τ)eβ̂(t−τ) +−(α̂ − α̂)[eβ̂(t−τ) − 1] 

−α̂ − β̂y(τ)eβ̂(t−τ) − α̂ + α̂[eβ̂(t−τ) − 1] 

−β̂y(τ)eβ̂(t−τ) − α̂[eβ̂(t−τ) − 1] 

Which yields the following 
 

−β̂y(τ)eβ̂(t−τ) = α̂[eβ̂(t−τ) − 1] 

Divide to both sides −β̂ 

y(τ)eβ̂(t−τ) = −
α̂

β̂
[eβ̂(t−τ) − 1] 

Finally, obtaining the system (10.2)  

y(τ)eβ̂(t−τ) +
α̂

β̂
[eβ̂(t−τ) − 1] 

Therefore, both cases are valid solutions for ŷ(t) given the initial condition y(τ) and the parameters α̂ and β̂ in 
the system (11), where t > τ . 
 
3.3 The Actual Parameters 
To verify the theoretical result, the researcher shows the time series data plot of Unemployment Rate in Ilocos 
Region, Philippines quarterly from January 2018 to October 2023. This means that the quarterly rate of 
unemployment rate was plotted against time. The time series data plot shown in Figure 1 shows that between 
January 2018 and April 2019, the unemployment rate changed moderately. However, in April 2020, there was a 
considerable increase, reaching 22.3%, which was most likely due to the economic consequences of the COVID-
19 pandemic, which resulted in big job losses and economic instability. According to Austria (2020), during the 
pandemic, the Department of Labor and Employment (DOLE), in collaboration with the Pangasinan Public 
Employment Services Office (PESO), recently held the first face-to-face (F2F) job fair, catering to around 300 
Pangasinense job seekers. From July 2022 to October 2022, the unemployment rate dropped gradually showing a 
job market bounce back as economic activity restarted and economic stimulus strategies were implemented to 
help organizations and workers. This declining trend peaked in October 2022, when the unemployment rate 
reached its lowest point of 4%. Between January 2023 and October 2023, the unemployment rate remained 
stable, ranging between 4.4% and 4.7%. This stability reflects a time of job market equilibrium, in which the 
unemployment rate does not significantly increase or fall.  
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Figure 1. Time series data plot of unemployment rate in Ilocos Region 

 
Table 1 presents the following values for the derivative of data points. 
 

Table 1. Computations for derivative of data observations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
For computations in Table 1, the mean of the derivative of data observations y̅′ is −0.2792.  
 
The y′i is the rate of change of the data values with respect to time, calculated as the difference in consecutive 
data points divided by the corresponding difference in time intervals, y′i quantifies how the values in the 
dependent are changing per unit time at the specific time point ti (Kiusalaas, 2016), and used in the formulation 
of the loss function Jse(α, β) to measure the deviation between the estimated derivative and the actual, 
contributing to the overall process of estimating the parameters α and β that define the first-order linear ODE 
modeling the data. 
 
Mean of the Observation Values Computation: 

y̅ =
173.9

24
≈ 7.26 

 
This means that y̅ ≈ 7.26 reflects a large proportion of data values, serving as a reference point for interpreting 
the data's overall behavior. This intercept is the most important variable in the model since it represents the 
beginning point of the relationship between the variables (Mali, 2024). According to Mariotti (2023) this can help 
improve the model's performance and interpretability while also providing insights regarding its goodness of fit 
and the need for further development or adjustment. This implies that the intercept value can help determine 
the need for more model development to better fit the observed data and connection.  

Derivatives of Data Points 

y′1 0.6 y′13 -1.8 

y′2 -0.8 y′14 -1.2 

y′3 0.2 y′
15

 2.1 

y′4 -1.5 y′16 -1.2 

y′5 0.7 y′17 -1.3 

y′6 -1 y′18 -0.8 

y′7 0.3 y′19 -1.1 

y′8 3.6 y′20 0.5 

y′9 13.5 y′21 0 

y′10 -11.2 y′22 -0.1 

y′11 0.4 y′23 0.3 

y′12 -2.2 y′24 -4.7 
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Mean of the Derivatives of Data Computation: 
 

y̅′ =
1

n
∑y′i

n

i=1

=
−6.7

24
≈ −0.2792. 

 
This means that, on average, -0.2792 values in the dependent variable decrease in the data over time at a rate of 
around -0.2792 units per unit of time. The negative derivative is important for understanding the overall 
behavior of the system. According to Tedeshi (2023), this serves as crucial for understanding the underlying 
dynamics of the system being modeled and can help influence the selection of appropriate modeling techniques 
or assumptions. The data suggests the mean derivative value of −0.2792 serves as an initial point for this loss 
function, which is important to the overall process of estimating 𝛼 and 𝛽, which represent the first-order linear 
ODE model of the data. 
 
According to Solak (2022) observed function values and derivatives may have changing noise levels, which are 
compensated for by introducing diagonal contributions with adjusted hyper parameters. Inference and 
prediction are done as usual. This strategy was used to learn in dynamic systems. 
 

Table 2 shows the minimization and computations for parameter β̂, including the numerator and the 
denominator. 
 

Table 2. Minimization and Computations for β̂ =
∑ (yi)[(yi

′)−y̅′]n
i=0

∑ (yi)(yi
n
i=0 −y̅)

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

β̂ Computation:  

β̂ =
∑ (yi)[(yi

′) − y̅′]n
i=0

∑ (yi)(yi
n
i=0 − y̅)

=
−157.412337

331.9596413
≈ −0.474 

 

This means that the value of β̂ ≈ −0.474 represents the coefficient of the variable y in the first-order linear 

ordinary differential equation. A negative value for β̂ indicates that the rate of change of y with respect to time is 

Time (t) Derivative of Data Observation Numerator Denominator 

1 0.6 5.890439 -3.6570811 
2 -0.8 -3.802059 0.3954191 
3 0.2 3.114605 -4.8479145 
4 -1.5 -8.179561 -3.6570811 
5 0.7 5.091684 -10.6383316 
6 -1 -4.252897 -7.9404147 
7 0.3 2.837933 -11.4945817 
8 3.6 20.171684 -10.6383316 
9 13.5 121.256696 13.6766696 
10 -11.2 -243.534509 335.7079241 
11 0.4 7.538787 42.7812537 
12 -2.2 -22.089545 48.9229205 
13 -1.8 -14.143719 19.1037531 
14 -1.2 -6.906225 1.9062525 
15 2.1 14.988771 -5.9587479 
16 -1.2 -7.734972 9.6950028 
17 -1.3 -7.349976 -0.3299976 
18 -0.8 -3.072897 -7.9404147 
19 -1.1 -4.186233 -10.9437483 
20 0.5 3.11668 -12.983332 
21 0 1.256265 -12.3562485 
22 -0.1 0.806265 -12.3562485 
23 0.3 2.548348 -12.5216652 
24 -4.7 -20.777901 -11.9654151 

SUM ∑𝐲′𝐢 = −𝟎.𝟐𝟕𝟗𝟏𝟕

𝐧

𝐢=𝟎

 ∑(𝐲𝐢)[(𝐲𝐢
′) − 𝐲̅′]

𝐧

𝐢=𝟎

= −𝟏𝟓𝟕. 𝟒𝟏𝟐𝟑𝟑𝟕 ∑(𝐲𝐢)(𝐲𝐢

𝐧

𝐢=𝟎

− 𝐲̅) = 𝟑𝟑𝟏. 𝟗𝟓𝟗𝟔𝟒𝟏𝟑 
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inversely related to the current value of y (Boyce, 2024). In simpler terms, as y increases, the rate of change of y 
decreases, and vice versa. 
 
α̂ Computation:  

α̂ = y̅′ − β̂y̅ = −0.27917 − (−0.474)(7.245833) ≈ 3.1568 
 
This means that the value of α̂ ≈ 3.1568 corresponds to the constant term in the first-order linear ordinary 
differential equation. It indicates the starting point for the rate of change of y over time, regardless of y's current 
value. 
 
In the simulation result show that the general equation for the first-order linear ordinary differential equation 
model for the unemployment rate in Ilocos Region from January 2018 to October 2023 quarterly is 
  

dy

dt
= 3.1620 − 0.474y 

(12) 

 
and the specific solution of the first-order linear ODE is  
 

ŷ(t) = y(τ)e−0.474(t−τ) +
3.1620

0.474
[1 − e−0.474(t−τ)] 

(13) 

 
To verify the solution of the first-order linear ODE, the researcher proves the initial condition 6.7 at τ = 0. The 
standard form of the system (4) for differential equations in a first-order linear ordinary differential equation 

dy

dt
+ 0.496y = 3.1620 

 
By using an integrating factor. The integrating factor is 

e∫0.474dt = e0.474t 
 
Multiply both sides of the differential equation by the integrating factor 

e∫0.474t
dy

dt
+ 0.474e∫ 0.474ty = 3.1620e0.474t 

 
Now, the left-hand side can be expressed as the derivative of the product of the integrating factor and the 
dependent variable y. 

d

dt
e∫0.474ty = 3.1620e0.474t 

 
Integrate both sides with respect to t 

∫
d

dt
e∫0.474ty = ∫3.1620e0.474t dt 

 

By applying the formula ∫e
at
=

1

a
eat + C, where a = 0.474. It follows that  

e∫0.474ty =
3.1620

0.474
e0.474t + C 

 

Multiply to both sides of the equations 
1

e∫0.474t
 

y =
1

e0.474t
(6.670970464e0.474t + C) 

 
Finally, obtaining 

y(t) = 6.670970464 + Ce−0.474t 
 
Solving for the value of Cwhen t = 0 yields to 

y(0) = 6.670970464 + Ce−0.474(0) 
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Substituting y(0) to 6.7, gives 

6.7 = 6.670970464 + Ce−0.474(0) 
6.7 = 6.670970464 + C 
C = 0.02902953586 

 
Solving the initial condition y(0), when C = 0.02902953586 

y(0) = 6.670970464 + 0.02902953586e−0.474(0) 
y(0) = 6.670970464 + 0.02902953586 

y(0) ≈ 6.7 
The theorem below presents the initial value, which gives us the solution for the first-order linear ordinary 
differential equation at the given time. 
 
Theorem 4.  
(Initial condition)  Show that if the initial condition y(0) = 6.7, then τ = 0 for t > τ. 
 
Proof:  
 
Consider the solution of the first-order linear ODE in the system (13) 

ŷ(t) = y(τ)e−0.474(t−τ) +
3.1620

0.474
[1 − e−0.474(t−τ)] 

 
Since ŷ(0) = y(τ) = 6.7, this implies that 

6.7 = 6.7e−0.474(t−τ) + 6.670970464[1 − e−0.474(t−τ)] 

 

Substituting e−0.474(t−τ) to x, leads to 
6.7 = 6.7x + 6.670970464[1 − x] 

 
Which can be simplified to  

6.7 = 6.7x + 6.670970464 − 6.670970464x 
6.7 = 6.670970464 − 0.02902953586x 
6.7 − 6.670970464 = −0.02902953586x 
−0.02902953586 = −0.02902953586x 

 
Obtaining 

x = 1 
 
When t = 0, then having 

e−0.474(0−τ) = 1 
 
Applying the natural logarithmic to the both sides 

−0.474(−τ) = ln 1 
0.474τ = ln 1 

τ = 0 
 
Hence, when τ = 0, this relationship holds true as time passes with t moving forward the initial time point τ. To 
summarize the result when t = 0 for t > τ, this means that, the situation where time starts from zero at some 
point beyond the initial observation time τ and observing the system at a moment in time strictly greater that τ.  
 
The initial value for the solution of a first-order linear ODE if t = 0 and τ = 0 is 
 

y(0) = 6.7e−0.474(0−τ) +
3.1620

0.474
[1 − e−0.474(0−τ)] 

(14) 
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Using the parameter values from the ODE solution, the researcher graphs the ODE system's direction fields 
using MatLab software. This means that the direction fields are required to explain the behavior of the system 
given such parameters. 
 
Figure 2 shows the dynamics between the actual data and the solution for the first-order linear ordinary 
differential equation. Using MatLab, the researcher graphs both the direction field and the ODE solution, 
indicating the direction of all system solutions. Using the direction field, the researcher generated a solution 
curve with an initial condition of 6.7. As the initial point moves along a solution curve, observe how the 
relationship between x and y changes over time. Notice that the curve looks to be closed in the sense that the 
value of approximately 6.67089 remains stable as time passes. Using the ODE solution, the researcher graphs 
using the Gaussian process regression with adjusted prediction regression dynamics system’s direction fields 
using MatLab software. This means that the direction fields optimize the regression parameters to achieve the 
best-fit behavior in the presence of fluctuation from the system's real data given such parameters. 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 

Figure 2. Actual data and solution for the first-order linear ODE of unemployment rate 

 
Figure 3 reveals the behavior of the adjusted prediction with dynamic regression parameter direction fields. By 
adjusting the regression parameter based on dynamic changes in the unemployment rate, the adjusted values 
seek to increase model accuracy by considering changing dynamics over time. The GPR with adjusted prediction 
uses dynamic regression parameter dynamics to extract a more consistent trend from unemployment rate data, 
facilitating the detection of long-term trends while limiting the impact of short-term fluctuations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Actual data and adjusted prediction of unemployment rate 
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This means that the behavior of Gaussian Process Regression (GPR) with adjusted predictions can have a 
significant impact on unemployment rates in the Ilocos region. Policy effectiveness is how well the GPR model 
forecasts unemployment rates, which can help policymakers evaluate the efficacy of current regional 
unemployment-reduction measures. By comparing GPR forecasts to actual rates, policymakers can determine 
whether their policies are having the desired effect. The Early Warning System means that the GPR predictions 
can serve as an early warning system for potential increases in unemployment, allowing policymakers to 
proactively implement interventions or adjust policies to mitigate negative economic impacts. Investment 
planning means that businesses and investors can use GPR predictions to inform investment decisions in the 
Ilocos Region. Understanding future unemployment trends can help businesses anticipate labor market 
conditions and adjust their hiring and expansion plans accordingly. The social implications are that 
unemployment rates have social implications, including impacts on individual well-being, family stability, and 
community cohesion. Economic development means that the behavior of the GPR model can provide insights 
into the broader economic dynamics of the Ilocos Region. By understanding how unemployment rates fluctuate 
over time, policymakers can tailor economic development strategies to promote job creation and sustainable 
growth. Policy evaluation means that analyzing the relationship between GPR predictions and actual 
unemployment rates can facilitate the evaluation of past policy interventions. By assessing how well predictions 
align with outcomes, policymakers can identify areas where policies may need adjustment or improvement. 
 
The economic relevance of the decrease in the unemployment rate over time suggests an improvement in the 
region's economic conditions. When unemployment decreases, it indicates that more people are finding jobs, 
leading to increased consumer spending, higher productivity, and overall economic growth. Gaussian Process 
Regression (GPR) with adjusted predictions is relevant in this context as it offers a statistical method to analyze 
and predict trends in data, such as the unemployment rate. By using historical data, GPR can model the 
relationship between time and the unemployment rate, enabling policymakers and economists to make more 
accurate forecasts and decisions. Policymakers can assess the effectiveness of their unemployment-reduction 
programs and actions by comparing GPR projections to actual unemployment rates. Furthermore, GPR can 
assist policymakers in identifying probable causes impacting unemployment patterns, allowing them to execute 
tailored measures to address specific labor market concerns. In conclusion, studying the unemployment rate in 
conjunction with GPR and adjusted forecasts provides useful insights into the region's economic trends. This 
enables more informed decision-making and policy formation to boost economic success and reduce 
unemployment. 
 
The figures below represent the study's findings: a comparison of the ODE model and the modified adjusted 
prediction using dynamic regression. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              Figure 4a. Solution of the ODE                                                   Figure 4b. Adjusted Prediction 
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Figure 4a shows the Ilocos Region's unemployment rate as well as the solution to the first-order linear ODE 
model. Prior to applying the modified regression ability, their values appeared to be different. The blue line 
represents the actual data curve, and the red line is the solution to the first-order linear ODE model, also known 
as the predicted curve. Figure 4b shows a satisfactory curve-fitting result, with the projected solution matching 
the actual data trend.  
 
Computation for comparison of the root mean square error (RMSE) between the ODE solution and the adjusted 
prediction. The root mean squared error (RMSE) is a measure of the differences between values predicted by a 
model and the values actually observed. 
 
RMSE ODE Solution Computation: 

RMSE = √
339.8808617

24
≈ 3.7632 

 
On average, the estimated values from the ODE solution are approximately 3.76 units off from the actual 
observed values. It means that the ODE solution makes an average error of approximately 3.76 units in 
predicting the observed values. 
 
RMSE Adjusted Prediction Computation: 

RMSE = √
13.37647664

24
≈ 0.74656 

 
An RMSE of approximately 0.75 indicates that the modified predictions are greater than the actual observed 
values by only 0.75 units on average, indicating that the model fits the data accurately. 
 
This means that the lower RMSE for the adjusted prediction model signifies improved prediction accuracy, 
better alignment with the observed data, and enhanced reliability for decision-making purposes. It indicates that 
the model, incorporating additional predictors, provides a more accurate representation of the relationship 
between variables and can make precise predictions. 
 

4.0 Conclusion  
The findings discussed in this study show that the researcher has made significant contributions to increasing 
our understanding of regression systems and their real-world applications. The comprehensive explanations for 
formulating regression equilibrium points and stability conditions will help readers better understand ordinary 
differential equations (ODEs) and regression systems. The researcher developed four theorems for analyzing 

parameter solutions such as 𝛽̂ and 𝛼̂, as well as the regression model for actual data and initial conditions, to 
show the mathematical analysis's accuracy and completeness. Furthermore, using MATLAB simulations to 
check the model's stability and existence, as well as closely tracking actual data, demonstrate the suggested 
technique's real-world relevance and reliability. Furthermore, the availability of actual data demonstrates the 
relevance of mathematical modeling to real-world circumstances, indicating that the study has the potential to 
guide solutions to local challenges such as the Ilocos Region's unemployment rate. 
 
The findings of this applied mathematics study have important implications for addressing economic 
challenges, particularly unemployment, in the Ilocos Region. The capacity to model and evaluate unemployment 
rate trends using regression systems and equilibrium instances can help policymakers and economists gain a 
better understanding of the underlying reasons for employment shifts, allowing them to design more targeted 
and successful interventions. The model's successful dynamic simulation, in which changed forecasts closely 
matched the actual data, implies that this modeling methodology can be used to anticipate and predict future 
unemployment patterns, allowing for the development of more informed economic plans and activities. Besides, 
identifying regression equilibrium points and conditions of stability can help determine the primary factors 
impacting the unemployment rate, allowing for more focused policy decisions and resource allocation to 
address the underlying reasons. Additionally, the interdisciplinary method, which combines mathematical 
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analysis, modeling tools, and real-world data, can be used to investigate and address a broader range of 
economic issues, including labor market dynamics, income distribution, and the impact of economic policies on 
various sectors. Overall, the findings show how rigorous mathematical modeling can provide useful insights 
and practical applications for bridging the gap between theoretical economic notions and evidence-based, 
successful economic policymaking. 
 
The researcher's recommendations based on the conclusions obtained include several important aspects that 
focus on using the insights obtained from mathematical modeling and analysis of unemployment rate changes 
in the Ilocos Region to guide more effective authorities and economic actions. First, the researcher proposes that 
elected authorities and economists use their insight into the underlying reasons for employment trends to build 
specialized and focused plans to address the unemployment problem. Second, the successful simulation of the 
model, in which the updated forecasts nearly matched the actual data, indicates the modeling framework's 
ability to predict future unemployment trends, allowing for preventive economic planning and appropriate 
interventions. Third, choosing regression equilibrium points and stability needs can help determine the key 
variables impacting the unemployment rate, guide resource allocation, and guide the design of initiatives to 
address the core causes. Furthermore, the researcher suggests broadening the interdisciplinary approach by 
combining mathematical computations, modeling tools, and real-world data to investigate and address a 
broader range of economic issues other than unemployment, such as labor market dynamics, income 
distribution, and the impact of economic policies. Finally, the researcher underlines how mathematical modeling 
may bridge the gap between theoretical economic notions and actual, evidence-based policymaking, resulting in 
more informed and effective economic initiatives and activities. 
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