Time Series Analysis of Factors Affecting Coconut Price in the Philippines

Authors

  • Cristian T. Camañan Professional School, University of Mindanao, Davao City, Philippines
  • Joy L. Picar Professional School, University of Mindanao, Davao City, Philippines

DOI:

https://doi.org/10.69569/jip.2025.618

Keywords:

Coconut production, Copra price, Market demand, Rainfall variability, Time series analysis

Abstract

Coconut remains a fundamental agricultural product in the Philippines, widely used in food production, cosmetics, and bio-industries. Despite its importance, the price of copra, its dried kernel, has experienced substantial volatility due to environmental conditions, market dynamics, and production levels. This study aims to analyze and forecast the factors influencing copra prices in the country, utilizing time series data from 2013 to 2022. Specifically, it investigates the influence of rainfall, coconut production, and market demand. Utilizing a non-experimental quantitative approach, the study employed ARIMA and SARIMA models for trend analysis and forecasting. AIC, BIC, AICc, residual variance, and log-likelihood guided model selection. Results revealed that ARIMA(0,1,1) was optimal for forecasting coconut production, ARIMA(2,1,1) for copra prices, and SARIMA(2,0,1)(1,0,1)[12] for Philippine rainfall,SARIMA(0,0,1)(2,1,1)[12] was used for Luzon, SARIMA(1,0,0)(2,0,0)[12] for Visayas, ARIMA(1,1,1) for Mindanao. Regression results confirmed that rainfall did not significantly influence coconut production, and neither coconut production nor market demand had a statistically significant effect on copra prices. The forecast indicated a potential decline in coconut production and copra prices if current conditions persist. The study concludes that time series forecasting models are essential for agricultural stakeholders, enabling data-driven planning, risk management, and policy formulation. To improve predictive accuracy and policy relevance, future studies are encouraged to incorporate historical data points on market demand and coconut production, and to adopt multivariate time series models, such as ARIMAX or Vector Autoregression (VAR), which can account for external shocks and global economic indicators. These approaches could better capture the complex interactions within the Philippine coconut industry and support more effective decision-making.

Downloads

Download data is not yet available.

References

Abdullah, A., Sarpong-Streetor, R., Sokkalingam, R., Othman, M., Azad, A., Syahrantau, G., & Arifin, Z. (2023). Intelligent hybrid ARIMA-NARX time series model for forecasting coconut prices. IEEE Access, 11, 48568-48577. https://doi.org/10.1109/access.2023.3275534

Abeysekara, M. G. D., & Waidyarathne, K. (2020). The coconut industry: A review of price forecasting modelling in major coconut-producing countries. Cord, 36https:/S&Porg/10.37833/cord.v36i.422

Acharya, R. (2024). Comparative analysis of stock bubbles in S&P 500 individual stocks: A study using SADF and GSADF models. Journal of Risk and Financial Management, 17(2), 59. doi:10.3390/jrfm17020059

Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Stock price prediction using the ARIMA model. 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, 106–112. https://doi.org/10.1109/uksim.2014.67

Aguilar, E. A., Montesur, J. G., & Lacsina, J. C. (2023). Capacitating strategies to promote climate-resilient coconut-based farming systems (CR-CBFS) in vulnerable coconut communities of the Philippines. IOP Conference Series: Earth and Environmental Science, 1235(1), 012002. https://doi.org/10.1088/1755-1315/1235/1/012002

Ahalya, S. P., Murugananthi, D., Rohini, A., Devi, R. P., & Kalpana, M. (2023). Study on predicting the price of coconut in the Tamil Nadu market. Asian Journal of Agricultural Extension, Economics & Sociology, 41(10), 149–158. https://doi.org/10.9734/ajaees/2023/v41i102153

Ahn, J., Park, C.-G., & Park, C. (2017). Pass-through of imported input prices to domestic producer prices: Evidence from sector-level data. The B.E. Journal of Macroeconomics, 17(2), Article 20160034. https://doi.org/10.1515/bejm-2016-0034

Alouw, J. C., & Wulandari, S. (2020). Present status and outlook of coconut development in Indonesia. IOP Conference Series: Earth and Environmental Science (Vol. 418, No. 1, p. 012035). IOP Publishing. https://doi.org/10.1088/1755-1315/418/1/012035

Antonio, R. J., Valera, H. G., Mishra, A. K., Pede, V. O., Yamano, T., & Vieira, B. O. (2025). Rice price inflation dynamics in the Philippines. Australian Journal of Agricultural and Resource Economics, 69(2), 440-452. https://doi.org/10.1111/1467-8489.70012

Arapović, A. O., & Karkin, Z. (2015). The impact of the agricultural market information system in Bosnia & Herzegovina on market integration: Asymmetric information and market performance. Khazar Journal of Humanities and Social Sciences, 18(1), 56-67. https://doi.org/10.5782/2223-2621.2014.18.1.56

ArunKumar, K., Kalaga, D., Kumar, C., Chilkoor, G., Kawaji, M., & Brenza, T. (2021). Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered, and deaths) for the top-16 countries using statistical machine learning models: Auto-regressive integrated moving average (ARIMA) and seasonal auto-regressive integrated moving average (SARIMA). Applied Soft Computing, 103, 107161. https://doi.org/10.1016/j.asoc.2021.107161

Assa, H. (2016). Financial engineering in pricing agricultural derivatives based on demand and volatility. Agricultural Finance Review, 76(1), 42–53. https://doi.org/10.1108/afr-11-2015-0053

Boudreau, P., Cajal-Grossi, J., & Macchiavello, R. (2023). Weather, productivity, and agricultural markets: Evidence from coconut farming. Agricultural Systems Journal, 222, 103938. https://doi.org/10.1016/j.agsy.2023.103938

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). Springer.

CEIC Data. (2025). Philippines: Copra prices (₱ per 100 kg). Retrieved from https://www.ceicdata.com/en/philippines/copra-price

Dawe, D. (2008). Have recent increases in international cereal prices been transmitted to domestic economies? The experience in seven large Asian countries (Working Paper No. 08-03). Agricultural and Development Economics Division, Food and Agriculture Organization of the United Nations. https://www.fao.org/3/ai506e/ai506e.pdf

Descals, A., Wich, S. A., Szantoi, Z., Struebig, M. J., Dennis, R., Hatton, Z., & Meijaard, E. (2023). High-resolution global map of closed-canopy coconut palm. Earth System Science Data, 15(9), 3991-4010. https://doi.org/10.5194/essd-15-3991-2023

Duan, Q., Xia, H., & Huang, Y. (2024). High slope deformation prediction based on residual modified ARIMA-GA-BP modeling. In International Conference on Cloud Computing, Performance Computing, and Deep Learning (CCPCDL 2024) (Proc. SPIE 13281, 1328108). SPIE. https://doi.org/10.1117/12.3050788

Faried, A. I., Syaula, M., Ananda, G. C., & Rahmadani, A. (2023). Future product intensification priorities for coconut plantation villages' local conditions. International Journal of Management, Economic and Accounting, 1(2), 444-449. https://doi.org/10.61306/ijmea.v1i2.46

Fernando, K. G. S., & Samarasinghe, S. A. A. T. (2019). Application of ARIMA models in agricultural production forecasting: A case study in coconut production in Sri Lanka. International Journal of Scientific and Research Publications, 9(2), 765–773. https://doi.org/10.29322/IJSRP.9.02.2019.p86100

Fisher, A., Hodgdon, T., & Lewis, M. (2024). Time-series forecasting methods: A review. https://doi.org/10.21079/11681/49450

Fujita, K. S. (2015). Estimating price elasticity using market-level appliance data. https://doi.org/10.2172/1236368

Girsang, L., Sukiyono, K., & Asriani, P. S. (2018). Export demand for Indonesia's crude palm oil (CPO) to Pakistan: Application of the error correction model. AGRITROPICA: Journal of Agricultural Sciences, 1(2), 68-77. https://doi.org/10.31186/j.agritropica.1.2.68-77

Hadi, M. N. (2022). Implementation of traditional risk management as loss prevention in coconut production results. AKADEMIK: Jurnal Mahasiswa Ekonomi &Amp; Bisnis, 2(2), 92-102.

https://doi.org/10.37481/jmeb.v2i2.554

Kang, Y., Li, L., Guo, J., Guo, X., & Pu, W. (2023). Analysis of the demand pricing model in the cloud service market. Advances in Intelligent Systems Research, 47-51. https://doi.org/10.2991/978-94-6463-238-5_7

Keintjem, K., Tulung, J. E., & Arie, F. V. (2023). Supply chain analysis of copra in Pakuure Village, Tenga of South Minahasa. Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 11(1), 204-212. https://doi.org/10.35794/emba.v11i1.45000

Lim, K. G. (2015). Model selection using information criteria for time series analysis. Journal of Applied Statistics, 42(6), 1231–1247. https://doi.org/10.1080/02664763.2014.980769

M, S. S. (2025). A study on the effectiveness of multimodal transportation. International Journal of Scientific Research in Engineering and Management, 09(04), 1–9. https://doi.org/10.55041/ijsrem45954

Mardiyati, S., & Natsir, M. (2023). Competitiveness and policy of soybean farming in Jeneponto Regency. Jurnal Penelitian Pertanian Terapan, 23(2). https://doi.org/10.25181/jppt.v23i2.272

Mathlouthi, H., & Lebdi, M. (2021). Estimation of dry events duration in Northern Tunisia – Analysis of extreme trends. Proceedings of the International Association of Hydrological Sciences, 384, 195–201. doi:10.5194/piahs-384-195-2021

Mialhe, F., Coudrain, A., & Viollaz, M. (2013). Rainfall variability and coconut production in the Philippines. Climate Risk Management, 2, 12–22. https://doi.org/10.1016/j.crm.2013.07.001

Mu’min, H., Telaumbanua, E., Sya’rani, R., Basir, B., & Hasdiansa, I. W. (2024). Building competitive advantage: Copra marketing strategy with SWOT analysis approach. Journal of Economics, Entrepreneurship, Management, Business and Accounting, 2(1), 16–28. https://doi.org/10.61255/jeemba.v2i1.285

Mulyadi, H., Nazamuddin, B., & Seftarita, C. (2019). What determines exports of coconut products? The case of Indonesia. International Journal of Academic Research in Economics and Management Sciences, 8(2). https://doi.org/10.6007/ijarems/v8-i2/5874

Onkov, K., & Tegos, G. (2014). Forecasting algorithm adaptive automatically to time series length. In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 537-545). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-44654-6_53

Özdemir, E. (2022). Foreign exchange volatility and the bubble formation in financial markets: Evidence from the COVID-19 pandemic. Ekonomika, 101(1), 8. doi:10.15388/ekon.2022.101.1.8

Panjaitan, B. R. (2024). Socioeconomic profile of coconut farmers in Sei Kepayang Tengah Village, Asahan Regency (analysis of education, housing, and income). Buletin Penelitian Sosial Ekonomi Pertanian Fakultas Pertanian Universitas Haluoleo, 26(1), 18-24. https://doi.org/10.37149/bpsosek.v26i1.1046

Pathmeswaran, C., Lokupitiya, E., Waidyarathne, K. P., & Lokupitiya, R. S. (2018). Impact of extreme weather events on coconut productivity in three climatic zones of Sri Lanka. European Journal of Agronomy, 96, 47–53. https://doi.org/10.1016/j.eja.2018.03.001

Prades, A., Salum, U. N., & Pioch, D. (2016). New era for the coconut sector. What prospects for research? Ocl, 23(6), D607. https://doi.org/10.1051/ocl/2016048

Pujiharto, P., & Wahyuni, S. (2023). Formulation of SCP-based coconut sugar marketing model through analysis of marketing patterns in Central Java Province, Indonesia. Tekirdağ Ziraat Fakültesi Dergisi, 20(4), 765-772. https://doi.org/10.33462/jotaf.1150532

Pulhin, F. B., Peras, R. J. J., Pulhin, J. M., & Gevaña, D. T. (2016). Influence of rainfall variability on coconut yield in selected provinces in the Philippines. Environmental Science and Management, 19(2), 54–61. https://doi.org/10.47125/jesam/2016_sp1/01

Punzalan, J. K. M., & Rosentrater, K. A. (2024). Copra meal: A review of its production, properties, and prospects. Animals, 14(11), 1689. https://doi.org/10.3390/ani14111689

Rahmawati, E., Nuraini, C., & Mutolib, A. (2023). Export competitiveness of Indonesian copra in international trade 2017-2021. East Asian Journal of Multidisciplinary Research, 2(9), 3621-3630. https://doi.org/10.55927/eajmr.v2i9.6134

Reddy, S. M. W., Groves, T., & Nagavarapu, S. (2014). Consequences of a government-controlled agricultural price increase on fishing and the coral reef ecosystem in the Republic of Kiribati. PLoS O,NE, 9(5), e96817. https://doi.org/10.1371/journal.pone.0096817

Reio, T. G. (2016). Nonexperimental research: Strengths, weaknesses, and issues of precision. European Journal of Training and Development, 40(8/9), 676–690. https://doi.org/10.1108/ejtd-07-2015-0058

Rodríguez, A. C., Daudt, R. C., D’Aronco, S., Schindler, K., & Wegner, J. D. (2021). Robust damage estimation of typhoon Goni on coconut crops with sentinel-2 imagery. Remote Sensing, 13(21), 4302.

https://doi.org/10.3390/rs13214302

Senadheera, S. D. N. M., Bandara, A. M. K. R., & Lankapura, A. I. Y. (2020). “Factors influencing fertilizer usage by medium and large-scale coconut farmers in Gampaha District, Sri Lanka”. Asian Journal of Research in Agriculture and Forestry, 6 (4), 41-47. https://doi.org/10.9734/ajraf/2020/v6i430113

Sharma, V. K., & Nigam, U. (2020). Modeling and forecasting of the COVID-19 growth curve in India. https://doi.org/10.1101/2020.05.20.20107540

Sirisha, U., Belavagi, M., & Attigeri, G. (2022). Profit prediction using ARIMA, SARIMA, and LSTM models in time series forecasting: A comparison. IEEE Access, 10, 124715–124727. https://doi.org/10.1109/access.2022.3224938

Sportel, T., & Véron, R. (2016). Coconut crisis in Kerala? Mainstream narrative and alternative perspectives. Development and Change, 47(5), 1051–1077.

https://doi.org/10.1111/dech.12260

United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. Retrieved from: https://sdgs.un.org/2030agenda

Utomo, Y., Jumali, M., & Rohman, F. (2024). Autoregressive integrated moving average (ARIMA) simulation methods in product inventory 9969b printable splicing tape. Tibuana, 7(2), 137-143. https://doi.org/10.36456/tibuana.7.2.9304.137-143

Wanjuki, T., Wagala, A., & Muriithi, D. (2021). https://doi.the org/10.36456/tibuana.7.2.9304.137-143

ages in Kenya using seasonal autoregressive integrated moving average (SARIMA) models. European Journal of Mathematics and Statistics, 2(6), 50-63. https://doi.org/10.24018/ejmath.2021.2.6.80

Yan, X., Zhang, H., Zhi-gang, W., & Miao, Q. (2024). Probabilistic time series forecasting based on similar segment importance in the process industry. Processes, 12(12), 2700. https://doi.org/10.3390/pr12122700

Zainol, F. A., Arumugam, N., Daud, W. N. W., Suhaimi, N. A. M., Ishola, B. D., Ishak, A. Z., & Afthanorhan, A. (2023). Coconut value chain analysis: A systematic review. Agriculture, 13(7), 1379. https://doi.org/10.3390/agriculture13071379

Zakia, Z. F., & Marifatullah, A. (2023). Analysis of the causes of coconut production decline and its impact on farmers' economy in Durian Payung Village. Al-Hijrah: Journal of Islamic Economics and Banking, 1(1), 1. https://doi.org/10.55062/al-hijrah.v1i1.297

Zheng, Y., Zhang, L., Wang, C., Wang, K., Guo, G., Zhang, X., & Wang, J. (2021). Predictive analysis of the number of human brucellosis cases in Xinjiang, China. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-91176-5

Downloads

Published

2025-09-09

How to Cite

Camañan, C., & Picar, J. (2025). Time Series Analysis of Factors Affecting Coconut Price in the Philippines. Journal of Interdisciplinary Perspectives, 3(10), 192–209. https://doi.org/10.69569/jip.2025.618