Fourier Transform Infrared Spectroscopy and Gravimetric Analysis of Protein Denaturation in Egg Albumen Treated with Colocasia esculenta L. Schott (Taro) Leaf Extract
DOI:
https://doi.org/10.69569/jip.2025.185Keywords:
Alternative plant-based therapeutics, Fourier transform infrared spectroscopy, Gravimetric analysis, Protein denaturation, Protein-protein interactions, Taro leaf extractAbstract
One of the leading factors contributing to the development of neurodegenerative disorders like Alzheimer's and Parkinson's disease is protein misfolding. When this occurs, these proteins lose their proper form, thereby leading to dysfunction and aggregation. Limited remedies that focus on symptomatic relief have been developed, thereby leading to plant-derived compounds gaining attention as their potential to stabilize proteins. The study aims to determine taro leaf extract's effect combined with egg albumen on protein structures observed through infrared spectroscopy, evaluating protein structural change and mass measuring for protein denaturation. Researchers compared four concentrations (12.5, 25, 50, and 100%) to diclofenac sodium and distilled water, with all groups containing egg albumen. Only 100% concentration and control groups were analyzed using FT-IR spectra, revealing hydrogen bonding interactions and structural differences by distinct shifts in Amide I bands. Through deconvolution, 100% concentration showed the highest α-helix content, presence of β-sheet, and no random coil signals, revealing preservation of native secondary structure and protein stability in opposite to negative control. The gravimetric analysis revealed increased mass in higher extract concentrations. A one-way ANOVA for gravimetric analysis yielded a p-value of 7.11 × 10^ (-5), indicating significance between groups. Tukey's HSD post hoc test showed significance between 100% and the concentrations (12, 25, and 50%) with pvalues of 0.013, 0.016, and 0.017, indicating distinct aggregation caused by 100% compared to the lower concentrations. Moreover, no significant differences were compared to controls with p-values of 0.149 and 0.584, suggesting aggregation and coagulative activity. Findings suggest that the extract exhibited secondary protein structural stabilizing effects on α-helix and β-sheet structures, potentially preventing misfolding despite presence of aggregation. However, further investigation is needed to evaluate its role as a coagulative agent and to understand its dosage-dependent behavior, offering valuable insights for future therapeutic approaches to protein misfolding-related conditions.
Downloads
References
Alkanli, S. S., Alkanli, N., Ay, A., & Albeniz, I. (2022). CRISPR/CAS9 mediated Therapeutic approach in Huntington’s Disease. Molecular Neurobiology, 60(3), 1486–1498. https://doi.org/10.1007/s12035-022-03150-5
Amer-Sarsour, F., & Ashkenazi, A. (2019). The nucleolus as a proteostasis regulator. Trends in Cell Biology, 29(11), 849–851. https://doi.org/10.1016/j.tcb.2019.08.002
Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica Et Biophysica Acta (BBA) - Bioenergetics, 1767(9), 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004
Cho, H., & Kang, K. (2017). Effects of taro extract on brain resilience in in vitro Parkinson’s disease model induced by 6-Hydroxydopamine. Journal of Korean Biological Nursing Science, 22(4), 223–231. https://doi.org/10.7586/jkbns.2020.22.4.223
Dabeek, W. M., & Marra, M. V. (2019). Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in humans. Nutrients, 11(10), 2288. https://doi.org/10.3390/nu11102288
Dhouafli, Z., Cuanalo-Contreras, K., Hayouni, E. A., Mays, C. E., Soto, C., & Moreno-Gonzalez, I. (2018). Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cellular and Molecular Life Sciences, 75(19), 3521–3538. https://doi.org/10.1007/s00018-018-2872-2
Ferdaus, M. J., Chukwu-Munsen, E., Foguel, A., & Da Silva, R. C. (2023). Taro roots: an underexploited root crop. Nutrients, 15(15), 3337. https://doi.org/10.3390/nu15153337
Furlan, L., Barros, C. A., Pereira, G. R., Freitas, M. P., & Tavares, M. F. M. (2007). FTIR studies of denatured and aggregated egg albumen proteins. Analytical Sciences, 23(3), 365–368. https://doi.org/10.2116/analsci.23.365
Gadhave, D. G., Sugandhi, V. V., Jha, S. K., Nangare, S. N., Gupta, G., Singh, S. K., Dua, K., Cho, H., Hansbro, P. M., & Paudel, K. R. (2024). Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Research Reviews, 99, 102357. https://doi.org/10.1016/j.arr.2024.102357
Jafari, S. M., Esfanjani, A. F., Katouzian, I., & Assadpour, E. (2017). Release, characterization, and safety of nanoencapsulated food ingredients. In Elsevier eBooks (pp. 401–453). https://doi.org/10.1016/b978-0-12-809740-3.00010-6
Kebebe, D., Belete, A., & Gebre-Mariam, T. (2012). Evaluation of two olibanum resins as rate controlling matrix forming excipients in oral sustained release tablets. Ethiopian Pharmaceutical Journal, 28(2). https://doi.org/10.4314/epj.v28i2.4
Kumarasinghe, N., Dharmadeva, S., Galgamuwa, L., & Prasadinie, C. (2018). In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. AYU (an International Quarterly Journal of Research in Ayurveda), 39(4), 239. https://doi.org/10.4103/ayu.ayu_27_18
Lad, S. S., Kolhe, S. U., Devade, O. A., Patil, C. N., Nalawade, R. D., & Rode, M. R. (2023). A Review on Medicinal properties of Colocasia esculenta Linn. Research Journal of Pharmacology and Pharmacodynamics, 144–148. https://doi.org/10.52711/2321-5836.2023.00026
Lindawati, N. Y. (2018). DETERMINATION of TOTAL FLAVONOID LEVELS on LEAF STALKS ETHANOL EXTRACT of TARO (Colocasia esculenta [L.] Schott). Jurnal Farmasi (Journal of Pharmacy), 1(1), 58–66. https://doi.org/10.37013/jf.v1i1.65
Liu, L., Klausen, L. H., & Dong, M. (2018). Two-dimensional peptide based functional nanomaterials. Nano Today, 23, 40–58. https://doi.org/10.1016/j.nantod.2018.10.008
M, A., Arumugham, M., I., Ramalingam, K., & S, R. (2023). Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of Chitosan Thiocolchicoside-Lauric acid Nanogel. Cureus. https://doi.org/10.7759/cureus.46003
Madhuranga, H. D. T., & Samarakoon, N. A. (2023). In vitro Anti-Inflammatory Egg Albumin Denaturation Assay: An Enhanced Approach. Journal of Natural & Ayurvedic Medicine, 7(3), 000411. Retrieved from. https://medwinpublishers.com/JONAM/in-vitro-anti-inflammatory-egg-albumin-denaturation-assay-an-enhanced-approach.pdf
Majaliwa, N., Kibazohi, O., & Alminger, M. (2025). Fourier Transform Infrared Spectroscopy (FTIR) Probing on Interactions of Proteins with Phenolic Compounds in the East African Highland Banana Pulp at Different Stages of Banana Juice Extraction. International Journal of Biochemistry Research & Review, 34(2), 42–52. https://doi.org/10.9734/ijbcrr/2025/v34i2963
Maurer, M. S., Schwartz, J. H., Gundapaneni, B., Elliott, P. M., Merlini, G., Waddington-Cruz, M., Kristen, A. V., Grogan, M., Witteles, R., Damy, T., Drachman, B. M., Shah, S. J., Hanna, M., Judge, D. P., Barsdorf, A. I., Huber, P., Patterson, T. A., Riley, S., Schumacher, J., . . . Rapezzi, C. (2018). Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. New England Journal of Medicine, 379(11), 1007–1016. https://doi.org/10.1056/nejmoa1805689
Mitharwal, S., Kumar, A., Chauhan, K., & Taneja, N. K. (2022). Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves: A review. Food Chemistry, 383, 132406. https://doi.org/10.1016/j.foodchem.2022.132406
Movasaghi, Z., Rehman, S., & Rehman, I. U. (2008). Fourier Transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43(2), 134–179. https://doi.org/10.1080/05704920701829043
Novak, U., Žerovnik, E., Taler-Verčič, A., Žnidarič, M., Zupančič, B., & Grdadolnik, J. (2023). Amyloid formation of stefin B protein studied by infrared spectroscopy. Frontiers in Bioscience-Landmark, 28(3). https://doi.org/10.31083/j.fbl2803046
Nwaogwugwu, J. C., Uhegbu, F. O., Okereke, S. C., Nosiri, C., I., Amaka, E. N., & Nwamaka, I. J. (2020). Hematological Changes and Antidiabetic Activities of Colocasia esculenta (L.) Schatt Stem Tuber Aqueous Extract in Alloxan Induced Diabetic Rats. Journal of Pharmaceutical Research International, 1–9. https://doi.org/10.9734/jpri/2020/v32i1030487
Onyeaka, H., Passaretti, P., Miri, T., & Al-Sharify, Z. T. (2022). The safety of nanomaterials in food production and packaging. Current Research in Food Science, 5, 763–774. https://doi.org/10.1016/j.crfs.2022.04.005
Panganiban, S. P., Jose, H. D., Vindua, C. O., Camarce, C. D., Castañeda, J. N., Dacanay, J. V. & Ramos, E. D. (2024). The Effect of Colocasia esculenta L. Schott (Taro) Leaf Extract in the Clotting Time and Evaluation of Electrolytes as a Potential Clot Activator. Journal of Interdisciplinary Perspectives, 3(1), 19-26. https://doi.org/10.69569/jip.2024.0558
Ross, C. A., & Tabrizi, S. J. (2010). Huntington’s disease: from molecular pathogenesis to clinical treatment. The Lancet Neurology, 10(1), 83–98. https://doi.org/10.1016/s1474-4422(10)70245-3
Rubinsztein, D. C., Codogno, P., & Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery, 11(9), 709–730. https://doi.org/10.1038/nrd3802
Shah, Y. A., Saeed, F., Afzaal, M., Waris, N., Ahmad, S., Shoukat, N., & Ateeq, H. (2022). Industrial applications of taro (Colocasia esculenta) as a novel food ingredient: A review. Journal of Food Processing and Preservation, 46(11). https://doi.org/10.1111/jfpp.16951
Sjamsudin, E., Muharty, A., Riawan, L., & Priosoeryanto, B. P. (2021). The efficacy taro leaf extract on wound healing contaminated with Staphylococcus aureus bacteria. Padjadjaran Journal of Dentistry, 33(3), 199. https://doi.org/10.24198/pjd.vol33no3.21325
Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M., Korell, M., Marras, C., Bhudhikanok, G. S., Kasten, M., Chade, A. R., Comyns, K., Richards, M. B., Meng, C., Priestley, B., Fernandez, H. H., Cambi, F., Umbach, D. M., Blair, A., Sandler, D. P., & Langston, J. W. (2011). Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives, 119(6), 866–872. https://doi.org/10.1289/ehp.1002839
Tosif, M. M., Najda, A., Klepacka, J., Bains, A., Chawla, P., Kumar, A., Sharma, M., Sridhar, K., Gautam, S. P., & Kaushik, R. (2022). A concise review on taro mucilage: extraction techniques, chemical composition, characterization, applications, and health attributes. Polymers, 14(6), 1163. https://doi.org/10.3390/polym14061163
Van Dyck, C. H., Swanson, C. J., Aisen, P., Bateman, R. J., Chen, C., Gee, M., Kanekiyo, M., Li, D., Reyderman, L., Cohen, S., Froelich, L., Katayama, S., Sabbagh, M., Vellas, B., Watson, D., Dhadda, S., Irizarry, M., Kramer, L. D., & Iwatsubo, T. (2022). Lecanemab in early Alzheimer’s disease. New England Journal of Medicine, 388(1), 9–21. https://doi.org/10.1056/nejmoa2212948
VanWert, A. (2024, October 23). Diclofenac (Cataflam, Voltaren, others): Uses, Side Effects, Interactions, Pictures, Warnings & Dosing - WebMD. WebMD. Retrieved from https://www.webmd.com/drugs/2/drug-4284-4049/diclofenac-oral/diclofenac-sodium-enteric-coated-tablet-oral/details
Wudali, S. N., Barwad, A., Banadka, A., Shaikh, A., Al-Khayri, J. M., & Nagella, P. (2023). Bioactive Compounds and Biological Activities of Taro (Colocasia esculenta (L.). Schott). In Reference series in phytochemistry (pp. 1–23). https://doi.org/10.1007/978-3-031-29006-0_2-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Interdisciplinary Perspectives

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.