Antimicrobial Activity of Kangkong and Paragis Leaf Extracts against Klebsiella oxytoca

Authors

  • Raymund J. Capagas National University, Philippines
  • Daren Cian D. Capuno National University, Philippines
  • Mary Joy E. Gabao National University, Philippines
  • Arian R. Mamposte National University, Philippines
  • Jullia Franchesca R. Panganiban National University, Philippines
  • Marc Robin S. Pantino National University, Philippines

DOI:

https://doi.org/10.69569/jip.2024.0469

Keywords:

Antimicrobial Efficacy, Eleusine indica, Ipomoea aquatica, Klebsiella oxytoca

Abstract

The global spread of multidrug resistance challenges antimicrobial therapy, necessitating the search for alternative approaches. The present study assessed the antimicrobial efficacy of the methanolic leaf extracts of Ipomoea aquatica Forssk. (Kangkong), Eleusine indica (L.) Gaertn. (Paragis), Moreover, its combination at varying concentrations of 25%, 50%, 75%, and 100% against Klebsiella oxytoca using established microbiological techniques. Fifty (50) grams of powdered leaves from the Ipomoea aquatica Forssk. (Kangkong) plant was soaked in 375 mL of 95% methanol for 48 hours (2 days) with intermittent stirring— similarly, 50 grams of Eleusine indica (L.) Gaertn. (Paragis) were processed using the same method. The macerated powdered leaf samples were filtered using a Whatman filter paper No. 1 and extracted using a rotary evaporator. The obtained extracts were utilized to prepare varying concentrations of 25%, 50%, 75%, and 100% of methanolic leaf extracts for each plant. Positive control (Tigecycline) and negative control (10% DMSO), along with the preparation of extracts, were also prepared. The antimicrobial efficacy of these methanolic leaf extracts at different concentrations and the controls were evaluated against Klebsiella oxytoca using the disk diffusion method. The results obtained indicate that the methanolic leaf extracts of Ipomoea aquatica Forssk. (Kangkong) and Eleusine indica (L.) Gaertn. (Paragis) did not exhibit any inhibitory effects on Klebsiella oxytoca. Both plants' combined methanolic leaf extracts also showed non-inhibitory effects, indicating that Klebsiella oxytoca is resistant to both plant extracts and, thus, did not yield a synergistic effect. This study provides a scientific understanding of the antimicrobial efficacy of the plants' properties. Further investigation is needed to assess alternative extraction and methods to determine the antimicrobial efficacy of the plant extracts.

Downloads

Download data is not yet available.

References

Adoho, A. C. C., Zinsou, F. T. A., Olounladé, P. A., Azando, E. V. B., Hounzangbé-Adoté, M. S., & Gbangboche, A. B. (2021). Review of the literature of Eleusine indica: phytochemical, toxicity, pharmacological and zootechnical studies. Journal of Pharmacognosy and Phytochemistry, 10(3), 29–33. https://doi.org/10.22271/phyto.2021.v10.i3a.14060

Alaekwe, Ajiwe, Ajiwe, Aningo, A., I. O, Ajiwe, V. I. E, Ajiwe, A. C. &. Aningo, G. N. (2015). Phytochemical and anti–microbial screening of the aerial parts of Eleusine indica. Indian Journal of Pure & Applied Biosciences, 3(1), 257-264. https://tinyurl.com/4dw368s9

Allemailem, K. S. (2021). Antimicrobial potential of naturally occurring bioactive secondary metabolites. Journal of Pharmacy and Bioallied Sciences, 13(2), 155. https://doi.org/10.4103/jpbs.jpbs_753_20

Al-Khikani, F. H. O., Abadi, R. M., & Ayit, A. S. (2020). Emerging carbapenemase Klebsiella oxytoca with multidrug resistance implicated in urinary tract infection. Biomedical and Biotechnology Research Journal, 4(2), 148. https://doi.org/10.4103/bbrj.bbrj_165_19

Al-Zubairi, A. S., Abdul, A. B., Abdelwahab, S. I., Peng, C. Y., Mohan, S., & Elhassan, M. M. (2011). Eleucine indica possesses antioxidant, antibacterial and cytotoxic properties. Evidence- Based Complementary and Alternative Medicine, 2011(1), 965370. https://doi.org/10.1093/ecam/nep091

Aslam, B., Wang, W., Arshad, M., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi.org/10.2147/idr.s173867

Bhaigybati, T., Sanasam, S., Gurumayum, J., Singh, L. R., & Devi, P. G. (2020). Phytochemical profiling, antioxidant activity, antimicrobial activity and GC-MS analysis of Ipomoea aquatica Forsk collected from EMA market, Manipur. J Pharmacogn Phytochem, 9(1), 2335-2342. https://tinyurl.com/mwnnjscx

Biswas, B., Rogers, K., McLaughlin, F., Daniels, D., & Yadav, A. (2013). Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajavaL.) on Two Gram-Negative and Gram-Positive Bacteria. International Journal of Microbiology, 0(0), 1–7. https://doi.org/10.1155/2013/746165

Boakye, Y. D. (2016). Anti-infective properties and time-kill kinetics of phyllanthus muellerianus and its major constituent, geraniin. Medicinal Chemistry, 6(2). https://doi.org/10.4172/2161-0444.1000332

Caccam, G. G., Mendoza, J. M., Rico, N. a. G., Robles, J. a. A., & Taculing, L. D. (2020). Comparative study of Paragis (Eleusine indica) and Guava (Psidium guajava) Methanolic leaf extract against Staphylococcus aureus and Escherichia coli. Health Research Bulletin, 7, 45-64. https://tinyurl.com/3xcaarja

Cadman, B. (2023). Klebsiella oxytoca infection: What you should know. Retrieved from: https://www.medicalnewstoday.com/articles/321072

Cancaya, İ. İ. T., & Somuncuoglu, E. I. (2021). Potential and Prophylactic Use of Plants Containing Saponin-Type Compounds as Antibiofilm Agents against Respiratory Tract Infections.

Evidence-based Complementary and Alternative Medicine, 0(0), 1–14. https://doi.org/10.1155/2021/6814215

Dago, T. R., Zewudie, A., Mamo, Y., Feyissa, D., & Geleta, S. (2020). Multi-Drug Resistant Post Corneal Repair Klebsiella oxytoca's Keratitis. International medical case reports journal, 13, 537–541. https://doi.org/10.2147/IMCRJ.S278625

De Paula Barbosa, A. (2014). An overview on the biological and pharmacological activities of saponins. Int J Pharm Pharm Sci, 6(8), 47-50. https://tinyurl.com/2p93yja3

Dias, M. C., Pinto, D., & Silva, A. M. S. (2021). Plant flavonoids: chemical characteristics and biological activity. Molecules, 26(17), 5377. https://doi.org/10.3390/molecules26175377 Ettebong, Ette & Obot, Daniel. (2020). A Systematic review on Eleusine indica (L.) Gaertn.): From ethnomedicinal uses to pharmacological activities. Journal of Medicinal Plants Studies,

8(4), 262-274. https://tinyurl.com/4afystrz

Farha, A. K., Yang, Q.-Q., Kim, G., Li, H.-B., Zhu, F., Liu, H.-Y., Gan, R.-Y., & Corke, H. (2020). Tannins as an alternative to antibiotics. Food Bioscience, 38, 100751. https://doi.org/10.1016/j.fbio.2020.100751

Frost, J. (2024). Experimental Design: Definition and types. Retrieved from https://statisticsbyjim.com/basics/experimental-design/

Gauro, R., & Amatya, P. (2022). Phytochemical screening and biological activities of Ipomoea aquatica forssk. World journal of pharmacy and pharmaceutical Sciences, 11(9). https://doi.org/10.20959/wjpps20229-23165

Holland, K. (2017). What is Klebsiella oxytoca? Retrieved from https://www.healthline.com/health/klebsiella-oxytoca

Izah, S. C. (2018). Some determinant factors of antimicrobial susceptibility pattern of plant extracts. Research and Review Insights, 2(3), 1-4. https://doi.org/10.15761/rri.1000139

Md. Kamruzzaman. (2015). In vitro antimicrobial activity of different extracts of gotu kola and water spinach against pathogenic bacterial strains. Current Research in Microbiology and Biotechnology, 3(4), 663-669. https://doi.org/10.13140/RG.2.1.2180.4642

Kelkar, G. (2024). What is Experimental Design? A Comprehensive Guide for 2023. Retrieved from https://tinyurl.com/mpnfvj9u

Khan, R., Hoque, S. M., Hossain, K.F., Siddique, A.B., Uddin, K., & Rahman, M. (2020) Green synthesis of silver nanoparticles using Ipomoea aquatica leaf extract and its cytotoxicity and antibacterial activity assay. Green Chemistry Letters and Reviews, 13(4), 303-315. https://doi.org/10.1080/17518253.2020.1839573

Konwar, M., Sarma, M. P., Loying, S., Nayak, R., & Bhagawati, P. (2021). Phytochemical analysis and antimicrobial activity of leaves of Ipomoea aquatica forssk. International Journal of Botany Studies, 6(5), 1310-1314. https://tinyurl.com/4e7fhrza

Larghi, E. L., Bracca, A. B., Arroyo Aguilar, A. A., Heredia, D. A., Pergomet, J. L., Simonetti, S. O., & Kaufman, T. S. (2015). Neocryptolepine: A Promising Indoloisoquinoline Alkaloid with Interesting Biological Activity. Evaluation of the Drug and its Most Relevant Analogs. Current topics in medicinal chemistry, 15(17), 1683–1707. https://doi.org/10.2174/1568026615666150427113937

Li, N., Tan, Sn., Cui, J. et al. (2014). PA-1, a novel synthesized pyrrolizidine alkaloid, inhibits the growth of Escherichia coli and Staphylococcus aureus by damaging the cell membrane. J Antibiot 67, 689–696. https://doi.org/10.1038/ja.2014.49

Liu, X., & Lu, M. (2023). Normal saline: Past, present, and future. Science Progress, 106(2), 003685042311688. https://doi.org/10.1177/00368504231168821 Mahon, C. R., & Lehman, D. C. (2019). Textbook of Diagnostic Microbiology (6th ed.) Elsevier.

McPherson, R. A., & Pincus, M. R. (2021). Henry’s Clinical Diagnosis and Management by Laboratory Methods E-Book. Elsevier Health Sciences.

Moradigaravand, D., Martin, V., Peacock, S. J., & Parkhill, J. (2017). Population Structure of Multidrug-Resistant Klebsiella oxytoca within Hospitals across the United Kingdom and Ireland Identifies Sharing of Virulence and Resistance Genes with K. pneumoniae. Genome Biology and Evolution, 9(3), 574–584. https://doi.org/10.1093/gbe/evx019

Nakul, N., Phukan, U., Puzari, M., Sharma, M., & Chetia, P. (2021). Klebsiella oxytoca and Emerging Nosocomial Infections. Current Microbiology, 78(4), 1115–1123. https://doi.org/10.1007/s00284-021-02402-2

Naz, R., Ayub, H., Nawaz, S., Islam, Z. U., Yasmin, T., Bano, A., Wakeel, A., Zia, S., & Roberts, T. H. (2017). Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complementary and Alternative Medicine, 17(1), 302. https://doi.org/10.1186/s12906-017-1815-z

Rathee, P., Chaudhary, H., Rathee, S., Rathee, D., Kumar, V., & Kohli, K. (2009). Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflammation and Allergy - Drug Targets, 8(3), 229–235. https://doi.org/10.2174/187152809788681029

Safe, S., Jayaraman, A., Chapkin, R. S., Howard, M., Mohankumar, K., & Shrestha, R. (2021). Flavonoids: structure–function and mechanisms of action and opportunities for drug development. Toxicological Research, 37(2), 147–162. https://doi.org/10.1007/s43188-020-00080-

Saikia, K., Dey, S., Hazarika, S. N., Handique, G. K., Thakur, D., & Handique, A. K. (2023). Chemical and biochemical characterization of Ipomoea aquatica: Genoprotective potential and

inhibitory mechanism of its phytochemicals against α-amylase and α-glucosidase. Frontiers in Nutrition, 10, 1304903. https://doi.org/10.3389/fnut.2023.1304903 Sánchez, E., Rivas Morales, C., Castillo, S., Leos-Rivas, C., García-Becerra, L., & Ortiz Martínez, D. M. (2016). Antibacterial and antibiofilm activity of methanolic plant extracts against

nosocomial microorganisms. Evidence-Based Complementary and Alternative Medicine, 2016(1), 1572697. https://doi.org/10.1155/2016/1572697

Sasikala, M., & Sundaraganapathy, R. (2017). Optimization of extraction method for Ipomoea aquatica forssk. [indian river spinach] from its whole plant. International Journal of Recent Scientific Research, 8(5), 16967–16971. https://doi.org/10.24327/ijrsr.2017.0805.0254

Shaaban, M. T., Ghaly, M. F., & Fahmi, S. M. (2021). Antibacterial activities of hexadecanoic acid methyl ester and green‐synthesized silver nanoparticles against multidrug‐resistant bacteria. Journal of Basic Microbiology, 61(6), 557–568. https://doi.org/10.1002/jobm.202100061

Shah, P. (2021). Phytochemical analysis and antioxidant activity of Ipomoea aquatica from Ghodaghodi wet land area, Nepal. International Journal of Herbal Medicine, 9(2), 23-27. https://tinyurl.com/4sh6dcjv

Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. Mohd. D., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1), 90–101. https://doi.org/10.1016/j.sjbs.2014.08.002

Singh, L., Cariappa, M., & Kaur, M. (2016). Klebsiella oxytoca: An emerging pathogen? Medical Journal Armed Forces India, 72, 59–61. https://doi.org/10.1016/j.mjafi.2016.05.002 Sivaraman, D., Muralidaran, P., & Kumar, S. S. (2010). Evaluation of Anti-microbial and anti-inflammatory activity of methanol leaf extract of Ipomoea aquatica Forsk. Research Journal of

Pharmaceutical, Biological and Chemical Sciences, 1(2), 258–26. https://tinyurl.com/yexvebux

Sukor, N. S. M., Zakri, Z. H. M., Rasol, N. E., & Salim, F. (2023b). Annotation and Identification of Phytochemicals from Eleusine indica Using High-Performance Liquid Chromatography Tandem Mass Spectrometry: Databases-Driven Approach. Molecules, 28(7), 3111. https://doi.org/10.3390/molecules28073111

Suurbaar, J., Mosobil, R., & Donkor, A. (2017). Antibacterial and antifungal activities and phytochemical profile of leaf extract from different extractants of Ricinus communis against selected pathogens. BMC Research Notes, 10(1). https://doi.org/10.1186/s13104-017-3001-2

Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms, 9(10), 2041. https://doi.org/10.3390/microorganisms9102041

Vineetha, N., Vignesh, R., & Sridhar, D. (2015). Preparation, Standardization of Antibiotic Discs and Study of Resistance Pattern for First-Line Antibiotics in Isolates from Clinical Samples.

International Journal of Applied Research, 1(11), 624–631. https://tinyurl.com/j7rmm8my

Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics, 10(3), 318. https://doi.org/10.3390/antibiotics10030318

Yang, J., Long, H., Hu, Y., Feng, Y., McNally, A., & Zong, Z. (2022). Klebsiella oxytoca Complex: Update on Taxonomy, Antimicrobial Resistance, and Virulence. Clinical Microbiology Reviews, 35(1). https://doi.org/10.1128/cmr.00006-21

Yoon, B. K., Jackman, J. A., Valle-González, E. R., & Cho, N. (2018). Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. International Journal of Molecular Sciences, 19(4), 1114. https://doi.org/10.3390/ijms19041114

Zakri Z.H.M., Suleiman M., Shean Yeaw N., Ngaini Z., Maili S., Salim F. Eleusine indica for Food and Medicine. J. Agrobiotechnol, 12, 68–87. https://doi.org/10.37231/jab.2021.12.2.260 Zhao, Y., Wu, Y., & Wang, M. (2015). Bioactive substances of plant origin. In Springer eBooks.

Downloads

Published

2024-11-07

How to Cite

Capagas, R., Capuno, D. C., Gabao, M. J., Mamposte, A., Panganiban, J. F., & Pantino, M. R. (2024). Antimicrobial Activity of Kangkong and Paragis Leaf Extracts against Klebsiella oxytoca. Journal of Interdisciplinary Perspectives, 2(12), 206–215. https://doi.org/10.69569/jip.2024.0469